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Executive Summary 1 
 2 
A new framework is used, which separates forcing (instantaneous change in the radiative budget) and 3 
rapid adjustments (which modify the radiative budget indirectly through fast atmospheric and surface 4 
changes) from feedbacks (which operate through changes in climate variables that are mediated by a 5 
change in surface temperature). This framework offers a clear distinction between the traditional concept 6 
of radiative forcing (RF) and the relatively new concept of adjusted forcing (AF). For aerosols one can 7 
further distinguish forcing processes arising from aerosol-radiation interactions (ari) and aerosol-cloud 8 
interactions (aci). [7.1, Figures 7.1 and 7.2] 9 
 10 
Clouds exert an average cooling influence on Earth, of about −17 W m–2. This is the net result of a 11 
greenhouse (infrared) warming due mainly to high clouds (about +30 W m–2) and a cooling effect from 12 
reflecting solar radiation contributed by all cloud types (about −47 W m–2). This result is not new since AR4, 13 
but the important role of clouds in redistributing radiative fluxes vertically within the atmosphere is now 14 
better quantified. [7.2.1, 7.2.2, Figure 7.6] 15 
 16 
The net “clear-sky” feedback from water vapour and lapse rate changes together is very likely positive, 17 
that is, amplifies global climate changes. We estimate a very likely (90%) range1 for this feedback 18 
parameter, as traditionally defined, of 1.09 (0.91 to 1.27) W m−2 K−1. The mean value and spread in climate 19 
models are essentially unchanged from AR4, but are now supported by stronger observational evidence and 20 
better process understanding of what determines relative humidity distributions. However the traditional 21 
view of a weak inherent climate sensitivity boosted by strong positive feedback from water vapour depends 22 
on the analysis framework; a valid alternative yields stronger intrinsic sensitivity, with a weak net clear-sky 23 
feedback. [7.2.4, Figure 7.8] 24 
 25 
The net radiative feedback due to all cloud types is likely (>66% chance) positive, although a negative 26 
feedback (damping global climate changes) is still possible. We assign a very likely range of −0.2 to 1.4 W 27 
m–2 K–1 for the cloud feedback parameter. This conclusion is reached by considering a plausible range for 28 
unknown contributions by processes yet to be accounted for, in addition to those occurring in current climate 29 
models. The cloud feedback remains the most uncertain radiative feedback in climate models. Observations 30 
alone do not currently provide a robust, direct constraint, but multiple lines of evidence now indicate positive 31 
feedback contributions from changes in both the height of high clouds and the horizontal distribution of 32 
clouds. Additional feedback from low cloud amount is also positive in most climate models, but that result is 33 
not well understood, nor effectively constrained by observations, so confidence in it is low. [7.2.4, Figures 34 
7.9-7.10] 35 
 36 
Persistent contrails from aviation contribute a RF of +0.02 (+0.01 to +0.03) W m–2 for year 2010, and 37 
the combined contrail and contrail-cirrus AF from aviation is assessed to be +0.05 (+0.02 to +0.15) W 38 
m–2. This forcing can be much larger regionally but is very unlikely to produce observable regional effects 39 
on either the mean or diurnal range of surface temperature. [7.2.5] 40 
 41 
Climate-relevant aerosol properties result from aerosol sources and a number of atmospheric 42 
processes, which are considerably better understood than at time of the last IPCC assessment, but the 43 
representation of these processes varies greatly in global models. For instance, the importance of new 44 
particle formation, the role of organics, and how mixing increases aerosol mass absorption efficiency are 45 
better appreciated. However, it remains unclear what level of sophistication in global aerosol and climate 46 
models is required to estimate aerosol-radiation and aerosol-cloud interactions to a sufficient accuracy. 47 
[7.3.1, 7.3.2, 7.3.3, Figures 7.11-7.14] 48 
 49 
Aerosol-radiation interactions result in rapid adjustments, which affect the stability of the atmosphere 50 
and cause changes in cloud dynamics that are distinct from any aerosol-cloud interaction. Observations 51 
and detailed large eddy simulations show cloud cover decreases with absorbing aerosol embedded in the 52 
cloud layer, and increases when aerosols are above cloud. There is however limited evidence to gauge the 53 
relative importance of these two effects at the global scale. [7.3.4] 54 

                                                
1 Unless specified otherwise, all ranges for forcing and feedback parameters are 5 to 95% uncertainty intervals. 
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 1 
Aerosol-climate feedbacks occur mainly through changes in the source strength of natural aerosols or 2 
changes in the sink efficiency of natural and anthropogenic aerosols; a limited number of modelling 3 
studies have bracketed the feedback parameter within ±0.2 W m–2 K–1 with a low level of confidence. 4 
There is medium confidence for a weak DMS-CCN-cloud albedo feedback due to a weak sensitivity of CCN 5 
population to changes in DMS emissions. Although the limited evidence is for a rather weak aerosol-climate 6 
feedback at the global scale during the 21st century, regional effects on the aerosol may be important. [7.3.5] 7 
 8 
Research continues to provide evidence for an aerosol influence on the microphysical properties of 9 
clouds. There is emerging evidence from observations and large eddy simulations that some of these 10 
influences may compensate and thus yield smaller net effects. However there is also evidence for strong 11 
aerosol influences that can play an important role in determining the cloud fraction and associated adjusted 12 
forcing. These two types of responses are evident in both liquid-only and mixed-phase stratiform clouds. We 13 
do not have a good understanding of the prevalence of these two responses. [7.4.2, 7.4.3, 7.4.4] 14 
 15 
Research now emphasises the importance of considering the aerosol-cloud-precipitation system, as 16 
opposed to aerosol influences in individual clouds. This replaces earlier thinking that correctly identified 17 
aerosol-cloud microphysical processes but did not adequately address the multiple feedbacks that can occur 18 
within an evolving system. This new paradigm allows for a broader spectrum of responses in climate models 19 
and is preferable to earlier approaches that constrained climate model responses to be monotonic and 20 
relatively strong. [7.4.3, Figure 7.16] 21 
 22 
The representation of aerosol-cloud processes in climate models continues to be a challenge. Aerosol 23 
and cloud variability at scales significantly smaller than those resolved in climate models, and the subtle 24 
responses of clouds to aerosol at these scales, mean that for the foreseeable future, climate models will 25 
continue to rely on parameterisations of aerosol-cloud interactions or other methods that represent subgrid 26 
variability. This implies large uncertainties for estimates of the forcings associated with aerosol-cloud 27 
interactions. [7.4, 7.5.2] 28 
 29 
Cosmic rays enhance aerosol nucleation and cloud condensation nuclei production in the free 30 
troposphere, but the effect is too weak to have any climatic influence during a solar cycle or over the 31 
last century (medium evidence, high agreement). Changes in solar activity affect the flux of galactic 32 
cosmic rays impinging upon the Earth’s atmosphere, which has been hypothesized to affect climate through 33 
changes in cloudiness. Based on available information, no robust association between changes in cosmic rays 34 
and cloudiness have been identified. In the event that such an association exists, it is very unlikely to be due 35 
to cosmic ray-induced nucleation of new aerosol particles. [7.3, 7.4.5] 36 
 37 
The radiative forcing due to aerosol-radiation interactions (RFari) is assessed to be –0.4 (–0.7 to –0.1) 38 
W m–2.This assessment is less negative than reported in AR4 because of a re-evaluation of aerosol 39 
absorption. The uncertainty estimate is also more robust and based on multiple lines of evidence from 40 
models, remotely sensed data, and ground based measurements. [7.5.1, Figure 7.17] 41 
 42 
The RFari of different aerosol species (see Table 7.1) shows that aerosols have both negative and 43 
positive forcings. These estimates are not as robust as the total RFari as there is not as much supporting 44 
observational evidence. The dust RFari could be largely from natural and/or climate feedback effects and 45 
should not be considered solely as an anthropogenic forcing agent. [7.3.6, 7.5.1, Figure 7.18] 46 
 47 
Table 7.1: The RFari of different aerosol species. 48 

Species RFari (W m–2) 
Sulphate –0.4 (–0.6 to –0.2) 
Black carbon from fossil fuel and biofuel +0.3 (+0.1 to +0.5) 
Nitrate –0.13 (–0.23 to –0.03) 
Biomass burning aerosol +0.0 (–0.1 to +0.1) 
Secondary organic aerosol –0.08 (–0.28 to +0.12) 
Primary organic matter –0.05 (–0.09 to –0.01) 
Dust (not necessarily anthropogenic) –0.1 (–0.3 to +0.1) 
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 1 
The adjusted forcing due to aerosol-radiation interactions (AFari) is assessed to be –0.5 (–0.9 to –0.1) 2 
W m–2. The AF includes a rapid adjustment of cloud of –0.1 (–0.3 to +0.1) W m–2. While there is robust 3 
evidence for the existence of rapid adjustment of clouds in response to absorbing aerosols, these effects are 4 
multiple and poorly represented in climate models, leading to a rather large uncertainty. There is the 5 
potential of an additional positive contribution to AFari from cloud drop inclusions that is currently not 6 
included in this assessment because of the low agreement among the few available studies. [7.3.4, 7.5.2] 7 
 8 
The RF from absorbing aerosol on snow and ice is assessed to be +0.04 (+0.02 to +0.09) W m–2. Unlike 9 
in the last IPCC assessment, this estimate includes the effects on sea-ice, accounts for more physical 10 
processes, and incorporates evidence from both models and observations. This RF has a 2-4 times larger 11 
global mean surface temperature change per unit forcing and represents a significant forcing mechanism in 12 
the Arctic and over Tibet. [7.3.4, 7.5.1] 13 
 14 
The total adjusted forcing due to aerosols (AFari+aci, excluding the effect of absorbing aerosol on 15 
snow and ice) is assessed to be –0.9 (–1.5 to –0.3) W m–2. The AFari+aci estimate includes rapid 16 
adjustments, such as changes to the cloud lifetime and aerosol microphysical effects on mixed-phase, ice and 17 
convective clouds. This range was obtained by giving equal weight to satellite-based studies and estimates 18 
from climate models and inverse studies grouped together, and includes a small correction term to be in line 19 
with a 1750 reference period. It is consistent with multiple lines of evidence suggesting less negative 20 
estimates for aerosol-cloud interactions than in AR4. [7.4, 7.5.2, 7.5.3, Figure 7.19] 21 
 22 
The radiative and adjusted forcings due to aerosol-cloud interactions (RFaci and AFaci) are assessed 23 
to be –0.3 (–0.7 to 0) W m–2 and –0.4 (–0.9 to 0) W m–2. The AFaci is estimated as the residual between 24 
AFari+aci and AFari. These ranges reflect our understanding of aerosol-cloud interactions in liquid and ice 25 
clouds, in particular from observations and large-eddy simulations, which reveal some compensating effects. 26 
However they remain somewhat inconsistent with available estimates from climate models, which do not 27 
capture all of the relevant processes and tend to simulate more negative forcings. [7.5.2, 7.5.3, Figure 7.19] 28 
 29 
Multiple lines of evidence suggest that global mean precipitation increases in a warming climate, but at 30 
a rate that is limited by the increase of radiant energy absorbed by the surface rather than by the more rapid 31 
increase in atmospheric water vapour. [7.6.2, 7.6.3] 32 
 33 
Regional precipitation changes will vary and are hard to predict, but a physical basis exists for 34 
predicting some systematic aspects of the changes. First, there is high confidence (high agreement, 35 
medium evidence) that as climate warms wet regions will become wetter on average and dry regions drier, 36 
although circulation changes will alter results in specific regions. Second, there is also high confidence (high 37 
agreement, medium evidence) that short-duration (a few days or less) precipitation extremes as a whole will 38 
increase more strongly with temperature than will the globally-averaged precipitation, but this will vary by 39 
region according to local shifts in mean precipitation. Lack of understanding of soil moisture, clouds and 40 
precipitation interactions, as well as controls on local circulations, limits confidence in projections of 41 
precipitation changes on the scale of even the largest catchments. [7.6.2, 7.6.3, 7.6.5] 42 

 43 
There is a variety of evidence that rapid responses related to aerosol-cloud interactions impact the 44 
spatial and temporal distribution of precipitation, but these effects are situation dependent and not 45 
systematic. There is very little evidence that aerosol-cloud interactions have a marked impact on the total 46 
amount of precipitation, except in so far as they modify globally averaged surface temperatures. [7.6.4] 47 
 48 
Theory, model studies and observations suggest that some Solar Radiation Management (SRM) 49 
methods, if realisable, could substantially offset a global temperature rise and some of its effects. There 50 
is medium confidence (medium evidence, medium agreement) that stratospheric aerosol SRM is scalable to 51 
counter the RF and some of the climate effects expected from a twofold increase in CO2 concentration. 52 
Models cited in this assessment explored various source injection strategies and treated aerosol microphysics 53 
differently; these variations produce significantly different estimates for the injection rate of chemicals 54 
needed to generate the required RF. There is no consensus on whether a similarly large RF could be achieved 55 
from cloud brightening SRM due to insufficient understanding of aerosol-cloud interactions. It does not 56 
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appear that land albedo change SRM can produce a large RF. Limited literature on other SRM methods 1 
precludes their assessment. [7.4.3, 7.7.2, 7.7.3, 7.7.4] 2 
 3 
SRM would produce an inexact compensation for the RF by greenhouse gases. There is very high 4 
confidence that there would be residual regional differences in climate (e.g., temperature and rainfall) in 5 
comparison to an unperturbed climate, however models consistently suggest that SRM would generally 6 
reduce climate differences compared to a world with the same elevated greenhouse gas concentrations and 7 
no SRM. [7.7.3, Figures 7.22-7.23] 8 
 9 
Numerous side effects and risks from SRM have been identified. For example, there is high confidence 10 
that SRM by stratospheric sulfate aerosols would increase polar stratospheric ozone depletion. Moreover, if 11 
SRM were used to counter a large RF by greenhouse gases and then terminated, most of the warming that 12 
had been offset would become evident within a few decades, and the rate of climate change would exceed 13 
the rate that would have occurred in the absence of SRM. Other side effects have been identified, and there 14 
would be other unanticipated or unexplored impacts. SRM will not compensate for ocean acidification from 15 
increasing CO2. [7.7.2, 7.7.3, 7.7.4, Figure 7.24] 16 
 17 

18 
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7.1 Introduction 1 
 2 
The atmosphere is mostly composed of gases, but also contains liquid and solid matter in the form of 3 
particles. It is usual to distinguish these particles according to their size, chemical composition, water content 4 
and sedimentation velocity into atmospheric aerosol particles, cloud particles and falling hydrometeors. 5 
Despite their small mass or volume fraction, particles in the atmosphere strongly influence the transfer of 6 
radiant energy and the spatial distribution of latent heating through the atmosphere, thereby influencing the 7 
weather and climate. 8 
 9 
Clouds usually form in rising air, which expands adiabatically and cools until cloud formation occurs, 10 
usually through the nucleation or freezing of aerosol particles. Cloud particles are generally larger than 11 
aerosol particles and mostly composed of liquid water or ice. The evolution of a cloud is governed by the 12 
balance between a number of dynamical, radiative and microphysical processes. Cloud particles of sufficient 13 
size become falling hydrometeors, which are categorised as drizzle drops, raindrops, snow crystals, graupel 14 
and hailstones. Precipitation is an important, but difficult to comprehend, climate variable which is 15 
influenced by the distribution of moisture and cloudiness, and to a lesser extent by the concentrations and 16 
properties of aerosol particles. 17 
 18 
Atmospheric aerosols are small solid and liquid particles suspended in the air that can be of natural or 19 
anthropogenic origin. They interact with solar radiation, through absorption and scattering, and to a lesser 20 
extent with terrestrial radiation, through absorption, scattering and emission. Aerosols can serve as cloud 21 
condensation nuclei (CCN) and ice nuclei (IN) upon which cloud droplets and ice crystals form. They also 22 
play a wider role in biogeochemical cycles in the Earth system, for instance by carrying nutrients to ocean 23 
ecosystems. 24 
 25 
Cloud and aerosol amounts and properties are extremely variable in space and time. The short lifetime of 26 
cloud particles in subsaturated air creates relatively sharp cloud edges and fine-scale variations in cloud 27 
properties, which is much less typical of aerosol layers. While the distinction between aerosols and clouds is 28 
generally appropriate and useful, it is not always unambiguous, which can cause interpretational difficulties 29 
(e.g., Charlson et al., 2007; Koren et al., 2007). 30 
 31 
Clouds respond to climate forcing mechanisms in multiple ways, and can alter both the net response of the 32 
system, for instance the globally-averaged surface temperature, but also modify the potency of the initial 33 
forcing. The representation of cloud processes in climate models has been recognised for decades as a 34 
continuing source of much of the uncertainty associated with our understanding of changes in the climate 35 
system (e.g., Arakawa, 1975; Arakawa, 2004; Bony et al., 2006; Cess et al., 1989; Charney, 1979; Randall et 36 
al., 2003), but cloud processes have never been systematically assessed by the IPCC before. Key issues 37 
include the representation of cumulus convection, cloud formation and dissipation processes. Inter-model 38 
differences in cloud feedbacks constitute by far the primary source of spread of both equilibrium and 39 
transient climate responses simulated by the CMIP3 climate models (Dufresne and Bony, 2008) despite the 40 
fact that most models simulate a near-neutral or positive cloud feedback (Randall et al., 2007 ; and later in 41 
this chapter). 42 
 43 
Anthropogenic aerosols are responsible for a radiative forcing of climate change through their interaction 44 
with radiation and as a result of their interaction with clouds. Quantification of these effects is fraught with 45 
uncertainties (Haywood and Boucher, 2000; Lohmann and Feichter, 2005). While previous attempts to 46 
quantify the net anthropogenic radiative forcing from first principles have found that it is very likely or 47 
virtually certain to be negative, they could not rule out the possibility of positive values (Forster et al., 2007; 48 
Haywood and Schulz, 2007). Our inability to better quantify non-greenhouse-gas radiative forcings, and 49 
primarily those that result from aerosol-cloud interactions, underlie difficulties in constraining climate 50 
sensitivity from observations, even if we had a perfect knowledge of the temperature record (Stevens and 51 
Schwartz, 2012). 52 
 53 
How clouds and aerosols contribute to climate change is conceptualized with the help of Figure 7.1, which 54 
also provides an overview of important terminological distinctions. Forcings associated with forcing agents 55 
such as greenhouse gases and aerosols act on global mean surface temperature through the global radiative 56 
(energy) budget. Rapid forcing adjustments (sometimes called rapid responses) arise when forcing agents, by 57 
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altering flows of energy internal to the system, affect cloud cover or other components of the climate system 1 
and thereby alter the global budget indirectly. Because these adjustments do not operate through changes in 2 
the global mean surface temperature, which are slowed by the massive heat capacity of the oceans, they are 3 
generally rapid and most are thought to occur within a few weeks. Feedbacks are associated with changes in 4 
climate variables that are mediated by a change in temperature; they contribute to amplify or damp the 5 
changes to the global mean surface temperature via their impact on the radiative budget. Such a framework 6 
offers a clear distinction between the traditional concept of radiative forcing (RF, defined as the 7 
instantaneous radiative forcing with stratospheric adjustment only) and the relatively new concept of 8 
adjusted forcing (AF, which includes other atmospheric and surface rapid adjustments) as introduced in 9 
Chapter 1 and further discussed in Section 8.1. Figure 7.2 links the former terminology of aerosol direct, 10 
semi-direct and indirect effects with the new terminology used in this Chapter and in Chapter 8. 11 
 12 
[INSERT FIGURE 7.1 HERE] 13 
Figure 7.1: Overview of feedback and forcing pathways involving clouds and aerosols. Forcing mechanisms are 14 
represented by black arrows; forcing agents are boxes with grey shadows, rapid forcing adjustments (also called rapid 15 
responses) are shown with brown arrows and feedbacks are other-coloured arrows. See text for further discussion. 16 
 17 
[INSERT FIGURE 7.2 HERE] 18 
Figure 7.2: Schematic of the new terminology used in this assessment report for aerosol-radiation and aerosol-cloud 19 
interactions and how they relate to the terminology used in AR4. The radiative forcing from aerosol-radiation 20 
interactions (abbreviated RFari) encompasses radiative effects from anthropogenic aerosols before any adjustment takes 21 
place, and corresponds to what is usually referred to as the aerosol direct effect. Rapid adjustments induced by aerosol 22 
radiative effects on the surface energy budget, the atmospheric profile and cloudiness contribute to the adjusted forcing 23 
from aerosol-radiation interactions (abbreviated AFari). They include what has earlier been referred to as the semi-24 
direct effect. The radiative forcing from aerosol-cloud interactions (abbreviated RFaci) refers to the instantaneous effect 25 
on cloud albedo due to changing concentrations of cloud condensation and ice nuclei. All subsequent changes to the 26 
cloud lifetime and thermodynamics are rapid adjustments, which contribute to the adjusted forcing from aerosol-cloud 27 
interactions (abbreviated AFaci). 28 
 29 
For the first time in the IPCC WGI assessment reports, clouds and aerosols are discussed together in a single 30 
chapter. Doing so allows us to assess, and place in context, recent developments in a large and growing area 31 
of climate change research. In addition to assessing cloud feedbacks and aerosol forcings, which were 32 
covered in previous assessment reports in a less unified manner, it becomes possible to assess understanding 33 
of the multiple interactions among aerosols, clouds and precipitation and their relevance for climate and 34 
climate change. Section 7.2 describes understanding of the role of clouds in climate change, and Section 7.3 35 
discusses aerosol processes and properties. Section 7.4 covers aerosol-cloud interactions. Estimates of the 36 
aerosol RF and AF due to aerosol-radiation and aerosol-cloud interactions are synthesised in Section 7.5. 37 
Section 7.6 is devoted to precipitation processes. Finally Section 7.7 assesses solar radiation management 38 
techniques aimed at cooling the planet as a number of these techniques rely on the modification of aerosols 39 
and clouds. 40 
 41 
7.2 Clouds 42 
 43 
This section summarises our understanding of clouds in the current climate from observations and process 44 
models; advances in the representation of cloud processes in climate models since AR4; assessment of cloud, 45 
water vapour and lapse rate feedbacks; and the radiative forcing due to clouds induced by moisture released 46 
by two anthropogenic processes (air traffic and irrigation). Aerosol-cloud interactions are assessed in Section 47 
7.4. The fidelity of climate model simulations of clouds in the current climate is assessed in Chapter 9. 48 
 49 
7.2.1 Clouds in the Present-Day Climate System 50 
 51 
7.2.1.1 Cloud Formation, Cloud Types, and Cloud Climatology 52 
 53 
To form a cloud, air must cool or moisten until it is sufficiently supersaturated to nucleate some of the 54 
available condensation or freezing nuclei. Clouds may be composed of liquid water (possibly supercooled), 55 
ice, or both (mixed phase). The nucleated cloud particles are initially very small, but grow by vapour 56 
deposition. Other microphysical mechanisms dependent on the cloud phase (e.g., droplet collision and 57 
coalescence for liquid clouds, riming and Wegener-Bergeron-Findeisen processes for mixed-phase clouds, 58 
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and snow formation for ice clouds) can produce a broader spectrum of particle sizes and types; turbulent 1 
mixing produces further variations in cloud properties on scales from kilometres to less than a centimetre 2 
(Brenguier, 1993). If and when some of the droplets or ice particles become large enough, these will fall out 3 
of the cloud as precipitation. 4 
 5 
Clouds form in diverse ways, including large-scale or orographically-driven ascent, convection in unstable 6 
atmospheric layers, radiative or evaporative cooling, or turbulent mixing of a moist layer. Air circulations 7 
often organise convection and associated clouds into coherent systems having scales from tens to thousands 8 
of kilometres, such as cyclones or frontal systems. These represent a significant modelling and theoretical 9 
challenge, since they are usually too large to represent in explicit cloud models (Section 7.2.2.1.1), but are 10 
also not well resolved nor parameterised by most climate models; this gap however is beginning to close 11 
(Section 7.2.2.1.2). Finally, clouds and cloud systems are organized by larger-scale circulations into different 12 
regimes such as deep convection near the equator, subtropical marine stratocumulus, or midlatitude storm 13 
tracks guided by the tropospheric westerly jets. Figure 7.3 shows a selection of widely occurring cloud 14 
regimes schematically and as they might appear in a typical geostationary satellite image. 15 
 16 
[INSERT FIGURE 7.3 HERE] 17 
Figure 7.3: Diverse cloud regimes reflect diverse meteorology. (a) A visible-wavelength geostationary satellite image 18 
shows (from top to bottom) expanses and long arcs of cloud associated with extratropical cyclones, subtropical coastal 19 
stratocumulus near Baja California breaking up into shallow cumulus clouds in the central Pacific, and mesoscale 20 
convective systems outlining the Pacific intertropical convergence zone or ITCZ. (b) A schematic section through a 21 
typical warm front of an extratropical cyclone (see orange dots in panel (a)) showing multiple layers of upper-22 
tropospheric ice (cirrus) and mid-tropospheric water (altostratus) cloud upwind of the frontal zone, an extensive region 23 
of nimbostratus associated with frontal uplift and turbulence-driven boundary layer cloud in the warm sector. (c) A 24 
schematic section along the low-level trade wind flow from a subtropical west coast of a continent to the ITCZ (see red 25 
dots in panel (a)), showing typical low-latitude cloud types, shallow stratocumulus above the cool waters of the oceanic 26 
upwelling zone near the coast and trapped under a strong subsidence inversion, and shallow cumulus over warmer 27 
waters further offshore transitioning to precipitating cumulonimbus cloud systems with extensive cirrus anvils 28 
associated with rising air motions in the ITCZ. 29 
 30 
Clouds cover about two thirds of the globe (Figure 7.4a,c). The midlatitude oceanic storm tracks and tropical 31 
precipitation belts are particularly cloudy, while continental desert regions and the central subtropical oceans 32 
are relatively cloud-free. Clouds are composed of liquid at temperatures above 0°C, ice below –38°C, and 33 
either phase at intermediate temperatures (Figure 7.4b). While temperatures at any given altitude are warmer 34 
in the tropics, clouds also extend higher there, such that ice cloud amounts are comparable to those at high 35 
latitudes. Approximately 40% of the liquid clouds are at least lightly precipitating (Figure 7.4d), but this 36 
fraction is much smaller for ice clouds. These fractions are sensitive to the criterion for defining 37 
precipitation, especially for ice clouds. 38 
 39 
In this chapter clouds above the 440 hPa pressure level are considered “high,” those below 680 hPa “low,” 40 
and those in-between are considered mid-level, following Rossow and Schiffer (1991). Most high clouds 41 
(mainly cirrus and deep cumulus outflows) occur near the equator and over tropical continents, but can also 42 
be seen in the midlatitude storm track regions and over midlatitude continents in summer (Figure 7.5a,e); 43 
they are produced by the storms generating most of the global rainfall in regions where tropospheric air 44 
motion is upward, such that dynamical, rainfall and high-cloud fields closely resemble one another (Figure 45 
7.5d, h). Mid-level clouds (Figure 7.5b,f), comprising a variety of types, are seen mainly in the storm tracks. 46 
Low clouds (Figure 7.5c,g), including shallow cumulus and stratiform clouds, occur over essentially all 47 
oceans but are most prevalent over cooler subtropical oceans where tropospheric air motion is downward. 48 
They are less common over land, except at night and in winter. 49 
 50 
[INSERT FIGURE 7.4 HERE] 51 
Figure 7.4: (a) Annual mean cloud fractional occurrence (CloudSat/CALIPSO 2B-GEOPROF-LIDAR dataset for 52 
2006–2011); (b) annual zonal mean liquid water path (blue shading, ocean only, O’Dell et al. (2008) microwave 53 
radiometer dataset for 1988–2005; the 90% uncertainty range, assessed to be 70–150% of the plotted value, is 54 
schematically indicated by the white error bar) and ice water path (grey shading, from CloudSat 2C-ICE dataset for 55 
2006–2011; the 90% uncertainty range, assessed to be 50–200% of the plotted value, is schematically indicated by the 56 
black error bar). (c-d) latitude-height sections of annual zonal mean cloud (including precipitation falling from cloud) 57 
occurrence and precipitation (attenuation-corrected radar reflectivity >0 dBZ) occurrence; the latter has been doubled to 58 
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make use of a common colour scale (2B-GEOPROF-LIDAR dataset). The dashed curves show the annual-mean 0°C 1 
and −38°C isotherms. 2 
 3 
[INSERT FIGURE 7.5 HERE] 4 
Figure 7.5: (a-d) DJF mean high, middle and low cloud cover from CloudSat/CALIPSO GEOPROF dataset (2006–5 
2011), and 500 hPa vertical pressure velocity (colours) and GPCP precipitation (magenta contours at 3 mm day–1 in 6 
dash and 7 mm day–1 in solid); (e-h) same as (a-d), except for JJA. For low clouds, the CALIPSO-only GOCCP dataset 7 
is used at locations where it indicates as larger fractional cloud cover, because the GEOPROF dataset removes some 8 
clouds with tops at altitudes below 750 m. Low cloud amounts are likely underrepresented in regions of high cloud 9 
(Chepfer et al., 2008), although not as severely as with earlier satellite technologies. 10 
 11 
7.2.1.2 Effects of Clouds on Earth’s Radiation Budget 12 
 13 
The effect of clouds on Earth’s present-day top-of-atmosphere (TOA) radiation budget, or cloud radiative 14 
effect (CRE), can be inferred from satellite data by comparing upwelling radiation in cloudy and non-cloudy 15 
conditions. Loeb et al. (2009) estimate that by enhancing the planetary albedo, clouds exert a global and 16 
annual shortwave cloud radiative effect (SWCRE) of –47 W m–2 and, by contributing to the greenhouse 17 
effect, exert a mean longwave effect (LWCRE) of +30 W m–2. Other published satellite estimates differ from 18 
these by 10% or less (Loeb et al., 2009). The net global mean CRE of –17 W m–2 implies a net cooling effect 19 
of clouds on climate. Each of the individual longwave and shortwave CREs is large compared to the ~4 W 20 
m–2 radiative forcing of doubling CO2. Thus clouds have the potential to cause significant climate feedback, 21 
depending on how climate-sensitive are the properties governing these two effects (Section 7.2.4). Clouds 22 
also exert a CRE at the surface, thus affecting the hydrological cycle (Section 7.6), though this aspect of 23 
CRE has received less attention (see Section 7.2.2.2). 24 
 25 
[INSERT FIGURE 7.6 HERE] 26 
Figure 7.6: Distribution of annual-mean top of atmosphere (a) SWCRE, (b) LWCRE, (c) net CRE (2001–2010 average 27 
from CERES-EBAF) and (d) precipitation (1981–2000 average from GPCP). 28 
 29 
The regional patterns of annual-mean TOA CRE (Figure 7.6a-b) reflect those of the altitude-dependent cloud 30 
distributions. High clouds, which are cold compared to the underlying surface, dominate patterns of 31 
LWCRE, while the SWCRE is sensitive to optically thick clouds at all altitudes. Regions of deep, thick cloud 32 
with large LWCRE and large negative SWCRE tend to accompany precipitation (Figure 7.6d), showing their 33 
intimate connection with the hydrological cycle. The net CRE is negative over most of the globe and most 34 
negative in regions of very extensive low-lying reflective stratus and stratocumulus cloud such as the 35 
midlatitude and eastern subtropical oceans, where SWCRE is strong but LWCRE is weak. In these regions, 36 
the spatial distribution of net CRE on seasonal timescales is strongly correlated with measures of low-level 37 
stability or inversion strength (Klein and Hartmann, 1993; Williams et al., 2006; Wood and Bretherton, 38 
2006; Zhang et al., 2010). However, models with comparably good simulations of this behaviour in the 39 
current climate can produce a broad range of cloud responses to climate perturbations (Wyant et al., 2006). 40 
 41 
7.2.2 Cloud Processes 42 
 43 
7.2.2.1 Modelling of Cloud Processes 44 
 45 
Cloud formation processes span scales from the submicron scale of cloud condensation nuclei to cloud 46 
system scales of up to thousands of kilometres. This range of scales is impossible to resolve with numerical 47 
simulations on computers, and is unlikely to become so for decades if ever. Nonetheless progress has been 48 
made through a variety of modelling strategies. 49 
 50 
7.2.2.1.1 Explicit simulations in small domains 51 
High-resolution models in small domains have been widely used to simulate interactions of turbulence with 52 
various types of cloud, e.g., cumulus, stratocumulus and cirrus. The grid spacing is chosen to be small 53 
enough to resolve explicitly the dominant turbulent eddies that drive cloud heterogeneity, with the effects of 54 
smaller-scale phenomena parameterized. This strategy is typically called large-eddy simulation (LES) when 55 
boundary-layer eddies are resolved, and cloud-resolving modelling (CRM) when only deep cumulus motions 56 
are well resolved. It is useful not only in simulating cloud and precipitation characteristics, but also in 57 
understanding how turbulent circulations within clouds transport and process aerosols and chemical 58 
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constituents. Cloud microphysics, precipitation and aerosol interactions are treated with varying levels of 1 
sophistication. Such models can be run in idealised settings, or with boundary conditions for specific 2 
observed cases. 3 
 4 
Such models have come to play several key scientific roles. First, they can be directly compared to in-situ 5 
and high-resolution remote sensing observations (e.g., Blossey et al., 2007; Fridlind et al., 2007; Stevens et 6 
al., 2005a). Second, they have revealed important influences of small-scale interactions, turbulence, 7 
entrainment and precipitation on cloud dynamics that must eventually be accounted for in parameterizations 8 
(e.g., Ackerman et al., 2009; Derbyshire et al., 2004; Krueger et al., 1995; Kuang and Bretherton, 2006). 9 
Third, they can be used to predict how cloud ensemble properties (such as cloud cover, depth, or radiative 10 
effect) may respond to climate changes (e.g., Ackerman et al., 2003; Tompkins and Craig, 1998). Fourth, 11 
they have become an important tool in testing and improving parameterizations of cloud-controlling 12 
processes such as cumulus convection, turbulent mixing, small-scale horizontal cloud variability, and 13 
aerosol-cloud interactions (Fletcher and Bretherton, 2010; Lock, 2009; Randall et al., 2003; Rio and 14 
Hourdin, 2008; Stevens and Seifert, 2008), as well as the interplay between convection and large-scale 15 
circulations (Kuang, 2008). 16 
 17 
CRMs of deep convective cloud systems with horizontal resolutions of 2 km or finer (Bryan et al., 2003) can 18 
reasonably characterise observed statistical properties of the cloud ensemble, including fractional area 19 
coverage of cloud (Xu et al., 2002), vertical thermodynamic structure (Blossey et al., 2007), the distribution 20 
of updraughts and downdraughts (Khairoutdinov et al., 2009), and organisation into mesoscale convective 21 
systems (Grabowski et al., 1998). Finer grids (down to hundreds of meters) often give significantly better or 22 
different results for individual storm characteristics such as vertical velocity or tracer transport, however. 23 
Some cloud ensemble properties remain sensitive to CRM microphysical parameterization assumptions 24 
regardless of resolution, particularly the vertical distribution and optical depth of clouds containing ice. 25 
 26 
It is computationally demanding to run a CRM in a domain large enough to capture convective organisation 27 
or perform regional forecasts. Some studies have created smaller regions of CRM-like resolution within 28 
realistically forced regional-scale models (e.g., Boutle and Abel, 2012; Zhu et al., 2010; Zhu et al., 2012), a 29 
special case of the common “nesting” approach for regional downscaling (see Section 9.6). One application 30 
has been to orographic precipitation, both associated with extratropical cyclones (e.g., Garvert et al., 2005) 31 
and with explicitly simulated cumulus convection (e.g., Hohenegger et al., 2008); better resolution of the 32 
orography improves the simulation of precipitation initiation and wind drift of falling rain and snow between 33 
watersheds. 34 
 35 
LES of shallow cumulus cloud fields with horizontal grid spacing of about 100 m and vertical grid spacing 36 
of about 40 m produces vertical profiles of cloud fraction, temperature, moisture and turbulent fluxes that 37 
agree well with available observations (Siebesma et al., 2003), though the simulated precipitation efficiency 38 
still shows some sensitivity to microphysical parameterizations (vanZanten et al., 2011). LES of 39 
stratocumulus-topped boundary layers reproduces the turbulence statistics and vertical thermodynamic 40 
structure well (e.g., Ackerman et al., 2009; Stevens et al., 2005a), and has been used to study the sensitivity 41 
of stratocumulus properties to aerosols (e.g., Savic-Jovcic and Stevens, 2008; Xue et al., 2008) and 42 
meteorological conditions. However, the simulated entrainment rate and cloud liquid water path are sensitive 43 
to the underlying numerical algorithms, even with vertical grid spacings as small as 5 m, due to poor 44 
resolution of the sharp capping inversion (Stevens et al., 2005b). On the other hand, using modern high-order 45 
turbulence closure schemes, the statistics of boundary-layer cloud distributions can be reasonably simulated 46 
even at CRM-like horizontal resolution of 1 km or larger (Cheng and Xu, 2008; Cheng and Xu, 2006). 47 
 48 
7.2.2.1.2 Cloud-resolving global models 49 
Since AR4, increasing computer power has led to three types of developments in global atmospheric models. 50 
First, models have been run with resolution that is higher than in the past, but not sufficiently high that 51 
cumulus clouds can be resolved. Second, models have been run with resolution high enough to resolve (or 52 
“permit”) large individual cumulus clouds over the entire globe. In a third approach, the parameterizations of 53 
global models have been replaced by embedded CRMs. The first approach is assessed in Chapter 9. The 54 
other two approaches are discussed below. 55 
 56 
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Global cloud-resolving models (GCRMs) have been run with grid spacings as small as 3.5 km (Putman and 1 
Suarez, 2011; Tomita et al., 2005). At present GCRMs can only be used for relatively short simulations of a 2 
few simulated months to a year or two on the fastest supercomputers, but in the not-too distant future they 3 
may provide climate projections. GCRMs provide a consistent way to couple convective circulations to 4 
large-scale dynamics, but must still parameterize the effects of individual clouds, microphysics, and 5 
boundary-layer circulations. 6 
 7 
Because they avoid many of the biases associated with uncertain aspects of cumulus parameterization, 8 
GCRMs better simulate many properties of convective circulations that are very challenging for 9 
conventional GCMs, including the diurnal cycles of precipitation (Sato et al., 2009) and the Asian summer 10 
monsoon (Oouchi et al., 2009). Inoue et al. (2010) showed that the cloudiness simulated by NICAM is in 11 
good agreement with observations from CloudSat and CALIPSO, but the results are sensitive to the 12 
parameterizations of turbulence and cloud microphysics (Iga et al., 2011; Inoue et al., 2010). 13 
 14 
Heterogeneous multiscale methods, in which cloud-resolving models are embedded in each grid cell of a 15 
larger scale model (Grabowski and Smolarkiewicz, 1999), have also been further developed as a way to 16 
realise some of the advantages of GCRMs but at less cost. This approach has come to be known as 17 
superparameterization, because the CRM effectively replaces some of the existing GCM parameterizations 18 
(e.g., Khairoutdinov and Randall, 2001; Tao et al., 2009). Super-parameterized models occupy a middle 19 
ground between “process models” and “climate models” (see Figure 7.7) in terms of both advantages and 20 
cost. 21 
 22 
Like GCRMs, super-parameterized models give more realistic simulations of the diurnal cycle of 23 
precipitation (Khairoutdinov et al., 2005; Pritchard and Somerville, 2010) and the MJO (Benedict and 24 
Randall, 2009) than most standard GCMs; they can also improve aspects of the Asian monsoon and the El 25 
Niño-Southern Oscillation (DeMott et al., 2011; Stan et al., 2010). Moreover, because they also begin to 26 
resolve cloud-scale circulations, both strategies provide a framework for studying aerosol-cloud interactions 27 
that standard GCMs lack (Wang et al., 2011b). 28 
 29 
[INSERT FIGURE 7.7 HERE] 30 
Figure 7.7: Model and simulation strategy for representing the climate system and climate processes at different space 31 
and time scales. Models are usually defined based on the range of spatial scales they represent, shown by square 32 
brackets. The temporal scales that can be represented for a given model class can vary; for instance climate models can 33 
be run for a few time steps, or can simulate millennia. The figure indicates the typical timescales for which a given 34 
model is used. Computational power prevents one model from covering all time and space scales. Since the AR4 the 35 
development of global cloud resolving models, and hybrid approaches such as the multi-scale modelling framework, 36 
have helped fill the gap between climate system and climate process models. 37 
 38 
7.2.2.2 Recent Observational Advances 39 
 40 
New observations, and continuing support for existing observational networks have also led to advances in 41 
understanding cloud processes since AR4. Observational constraints on long-term cloudiness changes or on 42 
cloud feedbacks are discussed respectively in Sections 2.3.8 and 7.2.4. 43 
 44 
In 2006, two new coordinated, downward-pointing active sensors, the cloud profiling radar (CPR) on the 45 
CloudSat satellite and the CALIOP lidar on board the CALIPSO satellite were placed in orbit. These sensors 46 
have significantly improved our ability to quantify cloud amounts, water content and precipitation globally 47 
(see Figures 7.4 and 7.5), and complement the detection capabilities of passive multispectral sensors (e.g., 48 
Chan and Comiso, 2011). An international network of surface-based active cloud sensors now deployed at 49 
several well-instrumented sites sampling a variety of climate regimes are being systematically compared 50 
with climate models (Illingworth et al., 2007) and their parameterizations (Hogan et al., 2009; Neggers et al., 51 
2012). Finally, field programs continue to give insights into cloud processes such as tropical cumulus 52 
convection over land (Lebel et al., 2010), cirrus formation (May et al., 2008) and aerosol-cloud-precipitation 53 
interactions associated with low-lying, liquid water clouds (Rauber et al., 2007; Wood et al., 2011b). 54 
 55 
The net downward flux of radiation at the surface, which is a key driver of the global hydrological cycle, is 56 
sensitive to the vertical distribution of clouds. Through radiation budget measurements and cloud profiling it 57 
has been estimated more accurately (Kato et al., 2011). Based on these observations, the global mean surface 58 
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longwave flux is about 10 W m-2 larger than the average in climate models, likely due to insufficient model-1 
simulated cloud cover or lower tropospheric moisture (Stephens et al., 2012). 2 
 3 
Satellite cloud-observing capacities are reviewed by Stubenrauch et al. (2012). New sensors show more 4 
clearly that low clouds are prevalent in nearly all types of convective system, to an extent not always 5 
captured in models (Chepfer et al., 2008; Haynes et al., 2011; Naud et al., 2010). Cloud layers at different 6 
levels overlap less often than often assumed in GCMs, especially over high-latitude continents (Mace et al., 7 
2009; Naud et al., 2008), and the common assumption that the radiative effects of precipitating ice can be 8 
neglected is not necessarily warranted (Waliser et al., 2011). New observations have led to revised 9 
treatments of overlap in some models, which significantly affects cloud radiative effects (Pincus et al., 10 
2006). Active sensors have also been useful in detecting low-lying Arctic clouds over sea ice (Kay et al., 11 
2008), improving our ability to test climate model simulations of the interaction between sea ice loss and 12 
cloud cover (Kay et al., 2011). 13 
 14 
Recent studies have confirmed that aircraft observations of unexpectedly numerous small ice crystals are 15 
largely an artefact of crystal shattering (Korolev et al., 2011), helping to reconcile in-situ and satellite 16 
observations. Satellite observations of ice water content have enabled model microphysical schemes to be 17 
tested globally, revealing for example that the rate of conversion of cloud ice to precipitation varies 18 
geographically in ways not consistent with current assumptions (Ma et al., 2012a) and that liquid water 19 
clouds in CRMs generally begin to rain too early (Suzuki et al., 2011). Global datasets of low-lying liquid 20 
cloud droplet number concentration based on passive observations at multiple wavelengths are being 21 
improved (Bennartz, 2007; Quaas et al., 2006) and are gaining popularity as a metric for climate model 22 
simulation of aerosol-cloud interactions (Wang et al., 2011b). 23 
 24 
7.2.3 Parameterization of Clouds in Climate Models 25 
 26 
7.2.3.1 Challenges of Parameterization 27 
 28 
Cloud droplets or ice crystals form from vapour, evolve, collide, may grow to form precipitation, and 29 
ultimately evaporate or fall out of the atmosphere. The representation of these processes in climate models is 30 
particularly challenging, in part because some of the fundamental details of these microphysical processes 31 
are poorly understood (particularly for ice- and mixed-phase clouds), and because the spatial heterogeneity 32 
of the clouds and their turbulent properties occurs at scales significantly smaller than a GCM grid box. 33 
 34 
Most CMIP5 climate model simulations use horizontal resolutions of 100–200 km in the atmosphere, with 35 
vertical layers varying between 100 m near the surface to more than 1000 m aloft. Within regions of this size 36 
in the real world, there is usually enormous subgrid-scale variability in cloud properties, associated with 37 
variability in humidity, temperature and vertical motion (Figure 7.16). This variability must be accounted for 38 
to accurately simulate cloud-radiation interaction, condensation, evaporation and precipitation, and other 39 
cloud processes that crucially depend on how cloud condensate is distributed across each grid box (Cahalan 40 
et al., 1994; Larson et al., 2001; Pincus and Klein, 2000). 41 
 42 
The simulation of clouds in modern climate models involves several parameterizations that must closely 43 
work together as a system. These include parameterization of turbulence and cumulus convection, cloud 44 
fraction and microphysical processes (including their vertical overlap between different grid levels), and 45 
aerosol and chemical transport. The system of parameterizations must balance simplicity, realism, 46 
computational stability and efficiency. Each parameterization makes simplifying mathematical assumptions 47 
about the subgrid variability within each grid cell; these assumptions vary significantly from model to model 48 
and for pragmatic and historical reasons may not even be fully consistent across the parameterizations used 49 
in one model. For example, clouds in a grid column may be assumed to be vertically stacked for the radiation 50 
calculation, but not for calculating evaporation of precipitation. In summary, realistic simulation of clouds 51 
and their response to climate change forms one of the greatest challenges of climate modelling. 52 
 53 
Cloud process parameterization is important for specialized chemical-aerosol-climate models (see review by 54 
Zhang, 2008) and for regional climate models as well as for CMIP5-class global models. A few of the former 55 
models have added complexity in representing subgrid cloud variability and the cloud particle size 56 
distribution (e.g., Jacobson, 2003). 57 
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 1 
7.2.3.2 Recent Advances in Representing Cloud Microphysical Processes 2 
 3 
7.2.3.2.1 Liquid clouds 4 
Recent development efforts have been focused on the introduction of more complex representations of 5 
microphysical processes, with the dual goals of coupling them better to atmospheric aerosols and linking 6 
them more consistently to the sub-grid variability assumed by the model for other calculations. For example, 7 
most AR4-era climate models used a single moment formulation for stratiform cloud water, predicting only 8 
the average cloud and rain water mass in each grid cell at a given time, diagnosing the droplet concentration 9 
using empirical relationships based on aerosol mass (e.g., Boucher and Lohmann, 1995; Menon et al., 2002), 10 
or altitude and proximity to land. Many were forced to employ an arbitrary lower bound on droplet 11 
concentration to reduce the aerosol radiative forcing (Hoose et al., 2009). Such formulations oversimplify 12 
microphysically-mediated cloud variations. 13 
 14 
By contrast, more models participating in CMIP5 use two-moment schemes for liquid stratiform cloud. 15 
Some diagnose rain and snow number concentrations and mixing ratios (Morrison and Gettelman, 2008; 16 
Salzmann et al., 2010), allowing treatment of aerosol scavenging and the radiative effect of snow. Some 17 
models explicitly treat subgrid cloud water variability for calculating microphysical process rates (Morrison 18 
and Gettelman, 2008). Cloud droplet activation schemes now account more realistically for subadiabaticity, 19 
particle composition, and particle size (Abdul-Razzak and Ghan, 2000; Ghan et al., 2011; Liu et al., 2012). 20 
Despite such advances in internal consistency, a continuing weakness in traditional GCMs (and even in 21 
GCRMs and superparameterized models, albeit to a much lesser extent) is their inability to (fully) resolve 22 
cloud-scale vertical motions, to which microphysical processes are highly sensitive. 23 
 24 
7.2.3.2.2 Mixed-phase and ice clouds 25 
Ice treatments are following a similar path to those for liquid water, and face similar challenges but amplified 26 
by the greater complexity of ice processes. Many AR4 models predicted the condensed water amount in just 27 
two categories – cloud and precipitation – with a temperature-dependent partitioning between liquid and ice 28 
within either category. Although supersaturation with respect to ice is commonly observed at low 29 
temperatures, only one CMIP3 GCM (ECHAM) allowed ice supersaturation (Lohmann and Kärcher, 2002). 30 
Many climate models now include separate, physically-based equations for cloud liquid versus cloud ice, and 31 
for rain versus snow, allowing a more realistic treatment of mixed-phase processes and ice supersaturation 32 
(Gettelman et al., 2010; Liu et al., 2007; Salzmann et al., 2010; Tompkins et al., 2007; see also Section 33 
7.4.4). These new schemes are tested in a single-column model against cases observed in field campaigns 34 
(e.g., Klein et al., 2009) or against satellite observations (e.g., Kay et al., 2012), and provide superior 35 
simulations of cloud structure than typical AR4-class parameterizations (Kay et al., 2012). New 36 
representations of the Wegener-Bergeron-Findeisen process in mixed-phase clouds (Lohmann and Hoose, 37 
2009; Storelvmo et al., 2008b) compare the rate at which the pre-existing ice crystals deplete the water 38 
vapour (Korolev, 2007) with the condensation rate for liquid water driven by vertical updraught speed; these 39 
are not yet included in CMIP5 models. Climate models are increasingly representing detailed microphysics, 40 
including mixed-phase processes, inside convective clouds (Fowler and Randall, 2002; Lohmann, 2008; 41 
Song and Zhang, 2011). Such processes can influence storm characteristics like strength and electrification. 42 
We reiterate that microphysical detail may not translate to improved simulation if the dynamics is not 43 
commensurately well resolved. 44 
 45 
7.2.3.3 Recent Advances in Parameterizing Moist Turbulence and Convection 46 
 47 
Both the mean state and variability in climate models are sensitive to the parameterization of cumulus 48 
convection. Since AR4, the development of convective parameterization has been driven largely by rapidly 49 
growing use of process models, in particular LES and CRMs, to inform parameterization development (see 50 
Hourdin et al., 2012). 51 
 52 
Accounting for greater or more state-dependent entrainment of air into deep cumulus updraughts has 53 
improved simulations of the Madden-Julian Oscillation (MJO), tropical convectively-coupled waves, and 54 
mean rainfall patterns in some models (Bechtold et al., 2008; Chikira and Sugiyama, 2010; Del Genio et al., 55 
2012; Del Genio et al., 2007; Hohenegger and Bretherton, 2011; Kim et al., 2012; Mapes and Neale, 2011; 56 
Song and Zhang, 2009) but usually at the expense of other aspects of the simulation. Improved activation 57 



Second Order Draft Chapter 7 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 7-15 Total pages: 139 

criteria and parameterizations of cumulus momentum fluxes in another model improved ENSO and tropical 1 
vertical temperature profiles (Neale et al., 2008; Richter and Rasch, 2008). Since AR4, more climate models 2 
have adopted cumulus parameterizations that diagnose the expected vertical velocity in cumulus updraughts 3 
(e.g., Chikira and Sugiyama, 2010; Donner et al., 2011; Park and Bretherton, 2009), in principle allowing 4 
more complete representations of aerosol activation, cloud microphysical evolution, and gravity wave 5 
generation by the convection. 6 
 7 
Several global models now couple shallow cumulus convection more closely to moist boundary layer 8 
turbulence (Couvreux et al., 2010; Neggers, 2009; Neggers et al., 2009; Siebesma et al., 2007) including cold 9 
pools generated by nearby deep convection (Grandpeix and Lafore, 2010). Many of these efforts have led to 10 
more accurate simulations of boundary-layer cloud radiative properties and vertical structure (e.g., Köhler et 11 
al., 2011; Park and Bretherton, 2009), and have ameliorated the common problem of premature deep 12 
convective initiation over land in one CMIP5 GCM (Rio et al., 2009). 13 
 14 
7.2.3.4 Recent Advances in Parameterizing Cloud Radiative Effects 15 
 16 
Some models have improved representation of subgrid cloud variability, which has important effects on grid-17 
mean radiative fluxes and precipitation fluxes, for example based on the use of probability density functions 18 
of thermodynamic variables (Watanabe et al., 2009). Stochastic approaches for radiative transfer can account 19 
for this variability in a computationally efficient way (Barker et al., 2008). New treatments of cloud overlap 20 
have been motivated by new observations (Section 7.2.2.2). 21 
 22 
7.2.4 Cloud, Water-Vapour and Lapse Rate Feedbacks 23 
 24 
Climate feedbacks are a central concern for projecting the magnitude of climate change, because they 25 
determine the sensitivity of global surface temperature to external forcing agents (see Chapter 9). Water 26 
vapour, lapse rate and cloud feedbacks each involve moist atmospheric processes closely linked to clouds, 27 
and in combination, produce most of the simulated climate feedback and most of its inter-model spread. The 28 
strength of a radiative feedback can be expressed as its impact on the top-of-atmosphere net downward 29 
radiative flux per degree of global surface temperature increase (or feedback parameter) and may be 30 
compared with the basic “black-body” response of −3.4 W m−2 K−1. 31 
 32 
7.2.4.1 Water-Vapour Response and Feedback 33 
 34 
As pointed out in previous reports (Randall et al., 2007, Section 8.6.3.1), physical arguments and models of 35 
all types suggest global water vapour amounts increase in a warmer climate, leading to a positive feedback 36 
via its enhanced greenhouse effect. The saturated water vapour mixing ratio (WVMR) increases nearly 37 
exponentially and very rapidly with temperature, at 6–10% per degree near the surface, and even more 38 
steeply aloft (up to 17% per degree) where air is colder. Mounting evidence continues to indicate that 39 
changes in relative humidity in warmer climates will be nowhere near this rapid, at least in a global and 40 
statistical sense, although new work highlights some robust changes that vary by region. Hence the WVMR 41 
is expected to increase, on average, at a rate similar to the saturated WVMR. 42 
 43 
Because global temperatures have been rising, the above arguments imply WVMR should be rising 44 
accordingly, and multiple observing systems indeed show this (Section 2.3.6). One exception is that 45 
meteorological station data suggest a plateauing of WVMR near the land surface over the last decade or so, 46 
but humidity at this level exerts little greenhouse effect (Soden and Held, 2006) and is governed by 47 
mechanisms different from those operating at upper levels (Joshi et al., 2008). A study challenging the water 48 
vapour increase (Paltridge et al., 2009) used an older reanalysis product, whose trends are contradicted by 49 
newer ones (Dessler and Davis, 2010) and by direct global observations which are considered more reliable 50 
for trends (see Box 2.3). The study also reported decreasing relative humidity in data from Australian 51 
radiosondes, but more complete studies show that region to be anomalous in this respect (Dai et al., 2011). 52 
Thus reliable, large-scale, multi-decade trend data remain consistent with the expected global feedback. 53 
 54 
Some studies have proposed that the response of upper-level humidity to natural fluctuations in the global 55 
mean surface temperature is informative about the feedback. However, small changes to the global mean 56 
(primarily from ENSO) involve geographically heterogeneous temperature change patterns, the responses to 57 
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which may be a poor analogue for global warming (Hurley and Galewsky, 2010b). Most climate models 1 
reproduce these natural responses reasonably well (Dessler and Wong, 2009; Gettelman and Fu, 2008), 2 
providing additional evidence that they at least represent the key processes. 3 
 4 
The “last-saturation” concept approximates the WVMR of air by its saturation value when it was last in a 5 
cloud (see Sherwood et al., 2010b for a review), which can be inferred from trajectory analysis. Studies since 6 
the AR4 using a variety of models and observations (including concentrations of isotopically substituted 7 
water vapour molecules) support this concept (Galewsky and Hurley, 2010; Sherwood and Meyer, 2006). 8 
The concept has clarified what determines relative humidity in the subtropical upper troposphere and placed 9 
the water-vapour feedback on firmer theoretical footing by directly linking actual and saturation WVMR 10 
values (Hurley and Galewsky, 2010a). 11 
 12 
In a warmer climate, an upward shift of the tropopause and poleward shift of the jets and associated climate 13 
zones is expected (Sections 2.6.4 and 2.6.5) and simulated by most GCMs (Section 10.3.3.1). These changes 14 
account, at least qualitatively, for robust regional changes in the relative humidity simulated in warmer 15 
climate by GCMs, including decreases in the subtropical troposphere and tropical uppermost troposphere, 16 
and increases near the extratropical tropopause and high latitudes (Sherwood et al., 2010a). This pattern may 17 
be amplified however by non-uniform atmospheric temperature or wind changes (Hurley and Galewsky, 18 
2010b). It is also the likely cause of most model-predicted changes in mid- and upper-level cloudiness 19 
patterns (Sherwood et al., 2010a; Wetherald and Manabe, 1980; see also Section 7.2.4.3.3). Idealised CRM 20 
simulations of warming climates also show upward shifts, with otherwise little change in mean relative 21 
humidity (e.g., Kuang and Hartmann, 2007; Romps, 2011). 22 
 23 
It remains unclear whether stratospheric water vapour contributes significantly to climate feedback. 24 
Observations have shown decadal variations in stratospheric water vapour, which may have affected the 25 
planetary radiation budget somewhat (Solomon et al., 2010) but do not have a clear relation to global 26 
warming (Trenberth et al., 2007, Section 3.4.2.4). GCMs can simulate strong positive feedbacks from 27 
stratospheric water vapour (Joshi et al., 2010), but with parameter settings producing unrealistic behaviour in 28 
the present climate. 29 
 30 
7.2.4.2 Relationship Between Water Vapour and Lapse-Rate Feedbacks 31 
 32 
Lapse rates in the tropics should change roughly as predicted by a moist adiabat, due to the strong restoring 33 
influence of convective heating. This restoring influence has now been directly inferred from satellite data 34 
(Lebsock et al., 2010), and the near-constancy of tropical atmospheric stability and deep-convective 35 
thresholds over recent decades is also now observable in sea surface temperature (SST) and deep convective 36 
data (Johnson and Xie, 2010). The stronger warming of the atmosphere relative to the surface produces a 37 
negative feedback on global temperature because the warmed system radiates more thermal emission to 38 
space for a given increase in surface temperature than in the reference case where the lapse rate is fixed. This 39 
feedback is not equally strong in all models, because lapse rates in middle and high latitudes change 40 
differently (Dessler and Wong, 2009). 41 
 42 
[INSERT FIGURE 7.8 HERE] 43 
Figure 7.8: Clear-sky feedback parameters as predicted by [CMIP3] GCMs. Black points in the centre show the total 44 
radiative response including the Planck response, with the Planck response and individual feedbacks from water vapour 45 
and lapse rate shown to the right in red. On the left are the equivalent three parameters calculated in an alternative, 46 
relative humidity-based framework. In this framework the Planck stabilization and each of the two feedbacks are all 47 
weaker and more consistent among the models. [PLACEHOLDER FOR FINAL DRAFT: Current working draft of 48 
figure taken from Held and Shell (2012); additional data from CMIP5 TBA]. 49 
 50 
As shown by Cess (1975) and discussed in the AR4 (Randall et al., 2007), models with a more negative 51 
lapse-rate feedback tend to have a more positive water-vapour feedback. Cancellation between these is close 52 
enough that their sum, or “clear-sky feedback,” has a 90% range in CMIP3 models of only +0.96 to +1.22 W 53 
m−2 K−1 (based on a Gaussian fit to the data of Held and Shell (2012), see Figure 7.8). The physical reason 54 
for this cancellation is that as long as water vapour infrared absorption bands are nearly saturated, outgoing 55 
longwave radiation is determined by relative humidity (Ingram, 2010) which exhibits little systematic change 56 
in any model (Section 7.2.4.1). In fact, Held and Shell (2012) and Ingram (2012a) argue that it makes more 57 
sense physically to consider a reference climate perturbation in which relative humidity is held fixed, rather 58 
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than specific humidity as per the usual convention. In that framework, the climate is fundamentally less 1 
stable but the water-vapour and lapse-rate feedbacks are each small; the large and partially compensating 2 
conventional feedbacks are seen to have arisen from unphysical choices made in first setting out the 3 
traditional framework. 4 
 5 
There is some observational evidence suggesting significant departures from the adiabatic lapse rate in the 6 
tropical upper troposphere (Section 2.2.4), which would be larger than simulated by models (Section 9.4.1). 7 
Since the combined clear-sky feedback depends on relative humidity change, however, the imputed lapse-8 
rate variations would have little influence on the total feedback and might even slightly increase it (Ingram, 9 
2012b). In summary, all sound evidence continues to support a strong, positive feedback (measured in the 10 
traditional framework) from the combination of water-vapour and lapse-rate changes. 11 
 12 
7.2.4.3 Cloud Feedbacks 13 
 14 
The dominant source of spread among GCM climate sensitivities in AR4 was due to diverging cloud 15 
feedbacks, particularly due to low clouds, and this continues to be true (Chapter 9). The net cloud feedback 16 
also continues to be nearly zero or positive in all global models. Progress has been made since the AR4 in 17 
understanding which simulated cloud changes underlie the positive feedbacks, and providing a stronger 18 
theoretical and observational basis for key positive cloud feedbacks. There has also been progress in 19 
quantifying cloud feedbacks, including separating the effects of different cloud types, using radiative-kernel 20 
residual methods (Soden et al., 2008) and satellite simulators (see Section 9.2.2.3) (Zelinka et al., 2012a). 21 
 22 
Until very recently cloud feedbacks have been diagnosed in models by differencing cloud radiative effects in 23 
doubled CO2 and control climates, normalized by the change in global mean surface temperature. Different 24 
diagnosis methods do not always agree, and some simple methods can make positive cloud feedbacks look 25 
negative (Soden and Held, 2006). Moreover, it is now recognised that some of the cloud changes are induced 26 
directly by the atmospheric radiative effects of CO2 independently of surface warming, and are therefore 27 
rapid adjustments rather than feedbacks. Most of the published studies available for this assessment did not 28 
separate these effects, but we do so where possible. It appears that these adjustments are sufficiently small in 29 
most models (see Section 7.2.4.3.6) that general conclusions regarding feedbacks are not significantly 30 
affected. 31 
 32 
Four aspects of the global cloud response to greenhouse gas-induced climate change are distinguished here: 33 
altitude increases of high-level clouds, effects of hydrological cycle and storm track changes on middle and 34 
high clouds, changes in low-level cloud cover, and changes in high-latitude clouds. Finally, recent research 35 
on the rapid cloud adjustments to CO2 is assessed. Cloud changes cause both longwave (greenhouse 36 
warming) and shortwave (reflective cooling) effects, which combine to give the overall cloud feedback or 37 
forcing adjustment for global climate. 38 
 39 
7.2.4.3.1 Cloud altitude feedback mechanisms involving high-level clouds 40 
High clouds at low and middle latitudes exert little net top-of-atmosphere radiative effect in the current 41 
climate due to near-compensation between their longwave and shortwave cloud radiative effects (Kiehl, 42 
1994). Nonetheless, systematic changes in their height or optical thickness could produce a significant 43 
radiative feedback by altering this balance. 44 
 45 
The dominant driver of net longwave cloud feedback in models, and a dominant contributor to net positive 46 
cloud feedback overall, appears to be a robust consequence of global warming: an increase in the height of 47 
the tropopause and the main level at which the deepest convective clouds stop rising and cloudy air flows 48 
outward, tentatively attributed in AR4 to the so-called “fixed anvil-temperature” mechanism (Hartmann and 49 
Larson, 2002). According to this mechanism, the outflow level from tropical deep convective systems is 50 
determined ultimately by the highest point at which water vapour emits significant infrared radiation; this 51 
point is governed by the water vapour partial pressure, therefore occurring at a similar temperature (higher 52 
altitude) in a warmer climate. A positive cloud altitude feedback results because the temperature difference 53 
between the cloud and the surface increases, increasing the cloud’s greenhouse effect without necessarily 54 
affecting its albedo. This occurs at all latitudes and has long been noted in model simulations (Cess et al., 55 
1990; Hansen et al., 1984). New studies confirm that this mechanism operates in GCMs, with a small 56 
modification to account for lapse-rate changes, and accounts for most of the total longwave cloud feedback 57 
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in CMIP3 GCMs (Soden and Vecchi, 2011; Zelinka and Hartmann, 2010; Zelinka et al., 2012a). In some 1 
GCMs the overall contributions from high cloud and from cloud height changes can be isolated (Figure 7.9) 2 
with net (LW+SW) estimates for the feedback parameter of +0.14 (0.0 to +0.30) W m–2 K–1 and +0.34 (+0.05 3 
to +0.62) W m–2 K–1, respectively. The increase in cloud height also occurs consistently in cloud-resolving 4 
models (Kuang and Hartmann, 2007; Kubar et al., 2007). 5 
 6 
[INSERT FIGURE 7.9 HERE] 7 
Figure 7.9: Cloud feedback parameters as predicted by GCMs. Total feedback shown at left by black symbols, broken 8 
out into infrared and visible components in red and blue, respectively (Zelinka et al., 2012a; Zelinka et al., 2012b). 9 
Centre panel shows components attributable to clouds in different height ranges (see text); values reported by Soden 10 
and Vecchi (2011) do not conform exactly to this definition but are shown for comparison, with their “mixed” category 11 
assigned “medium”. Right panel shows components attributable to different cloud property changes (not available from 12 
all studies). 13 
 14 
The observational record allows us to verify various elements of the above mechanism. First, the global 15 
tropopause is rising as expected (Chapter 2). Second, cloud heights change as predicted with regional, 16 
seasonal and interannual changes in near-tropopause temperature structure (Eitzen et al., 2009; Xu et al., 17 
2007; Zelinka and Hartmann, 2010), although the response may be affected by changes in stratospheric 18 
circulation (Chae and Sherwood, 2010; Eitzen et al., 2009). Third, Norris et al. (2012) report that two 19 
satellite datasets show a rising trend in high clouds since 1979 roughly consistent with the mechanism. 20 
Davies and Molloy (2012) report a downward height trend among all clouds in a shorter record from a 21 
satellite that measures heights more directly, but this is likely an artefact of instrument problems early in that 22 
record (Evan and Norris, 2012). 23 
 24 
7.2.4.3.2 Feedback mechanisms involving the amount of middle and high cloud 25 
Nearly all GCMs simulate a reduced middle and high cloud amount in warmer climates in low- and mid-26 
latitudes, especially in the subtropics (Trenberth and Fasullo, 2009; Zelinka and Hartmann, 2010). In global 27 
average, these cloudiness reductions cause a positive shortwave and negative longwave feedback; the latter 28 
almost completely cancels the altitude response (Figure 7.9), which may explain why the important role of 29 
cloud altitude feedbacks was not fully appreciated until recently. The net effect of changes in amount of all 30 
cloud types is a positive feedback, but this comes mainly from the changes low clouds (see the following 31 
section), implying a near-cancellation of LW and SW effects for the mid- and high-level amount changes. 32 
 33 
Changes in predicted cloud cover are geographically correlated with simulated subtropical drying (Meehl et 34 
al., 2007), suggesting that they are partly tied to large-scale circulation changes including the poleward shifts 35 
found in most models (Sherwood et al., 2010a; Wetherald and Manabe, 1980). Bender et al. (2012) and 36 
Norris et al. (2012) also report latitudinal variations in observed cloudiness trends since 1979 consistent with 37 
the poleward shift of the circulation indicated in several other observables (see Chapter 2) and simulated 38 
(albeit with weaker amplitude) by most GCMs (Yin, 2005). This shifts clouds to latitudes of weaker sunlight, 39 
decreasing the planetary albedo. The impact of the observed shift appears to be significant and would imply 40 
a strong positive feedback if it were due to global warming (Bender et al., 2012). Recent studies call into 41 
question how much of the observed shifts are temperature- or ozone-driven however (Chapter 10.3), so the 42 
true amount of positive feedback coming from poleward shifts remains highly uncertain but could be 43 
underestimated by GCMs. 44 
 45 
Tselioudis and Rossow (2006) predict reduced cloud cover in the storm-track itself in warmer climates based 46 
on observed present-day relationships with meteorological variables combined with model-simulated 47 
changes to those driving variables. In agreement with the above analysis, they found that this reduction 48 
contributed little to net cloud feedback. The upward mass flux in deep clouds should decrease in a warmer 49 
climate (Section 7.6) which might contribute to cloudiness decreases in convective regions (e.g., the ITCZ). 50 
Most CMIP3 GCMs produce too little storm-track cloud in the southern hemisphere compared to nearly-51 
overcast conditions in reality. This bias could also imply that positive feedback from poleward shifts is 52 
greater than in GCMs, or that the negative feedback many GCMs simulate in these regions from increasing 53 
cloud amount may be unrealistic (Trenberth and Fasullo, 2010). 54 
 55 
Changing coverage of thin cirrus clouds could in principle exert a significant feedback due to the net 56 
warming effect of these clouds (e.g., Rondanelli and Lindzen, 2010), but no mechanistic argument for a 57 
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particular change one way or the other has been advanced, and responses in GCMs so far are small (Zelinka 1 
et al., 2012b). 2 
 3 
7.2.4.3.3 Feedback mechanisms involving low clouds 4 
Differences in the response of low clouds to a warming are responsible for most of the spread in model-5 
based estimates of equilibrium climate sensitivity (Bony and Dufresne, 2005). Since the AR4 this finding has 6 
withstood further scrutiny (e.g., Soden and Vecchi, 2011; Webb et al., 2012), holds in CMIP5 models (Vial 7 
et al., 2012), and has been shown to apply also to the transient climate response (e.g., Dufresne and Bony, 8 
2008). This ‘low-cloud problem’ is most potent over tropical and sub-tropical oceans (Williams and 9 
Tselioudis, 2007; Williams and Webb, 2009; Xu et al., 2010), although not exclusively so (Trenberth and 10 
Fasullo, 2010), and is usually associated with the representation of shallow cumulus or stratocumulus clouds 11 
(Williams and Tselioudis, 2007; Williams and Webb, 2009; Xu et al., 2010). Because the low-cloud problem 12 
emerges in a variety of idealized model formulations (Medeiros et al., 2008; Zhang and Bretherton, 2008), or 13 
conditioned on a particular dynamical state (Bony et al., 2004), it appears to be attributable to how cloud, 14 
convective and boundary layer processes are parameterized in GCMs. 15 
 16 
The modelled response of low clouds does not appear to be dominated by a single feedback mechanism, but 17 
rather the net effect of several potentially competing mechanisms as elucidated in LES and GCM sensitivity 18 
studies (e.g., Bretherton et al., 2012; Zhang et al., 2012a; Zhang and Bretherton, 2008). Starting with some 19 
proposed negative feedback mechanisms, it has been argued that in a warmer climate, low clouds will be: (i) 20 
horizontally more extensive, because changes in the lapse rate of temperature also modify the lower-21 
tropospheric stability (Miller, 1997); (ii) optically thicker, because adiabatic ascent is accompanied by a 22 
larger condensation rate (Somerville and Remer, 1984); and (iii) vertically more extensive, in response to a 23 
weakening of the tropical overturning circulation (Caldwell and Bretherton, 2009). While these mechanisms 24 
may play some role in subtropical low cloud feedbacks, none of them appears dominant. Regarding the first 25 
mechanism, model fidelity to relationships observed to hold for the present climate fails to constrain the 26 
response of models to climate change (Section 7.2.1.2; see also Webb and Lock, 2012). The second 27 
mechanism, discussed briefly in the next section, appears to be a small effect. The third mechanism cannot 28 
yet be ruled out, but does not appear to be the dominant factor in determining subtropical cloud changes in 29 
GCMs (Bony and Dufresne, 2005; Zhang and Bretherton, 2008). 30 
 31 
Since the AR4, several new positive feedback mechanisms have been proposed, most associated with the 32 
marine boundary layer clouds thought to be at the core of the ‘cloud problem.’ These include the ideas that: 33 
warming-induced changes in the absolute humidity lapse rate change the energetics of mixing in ways that 34 
demand a reduction in cloud amount or thickness (Bretherton et al., 2012; Brient and Bony, 2012; Lock, 35 
2009); energetic constraints prevent the surface evaporation from increasing with warming at a rate sufficient 36 
to balance expected changes in dry air entrainment thereby reducing the supply of moisture to form clouds 37 
(Rieck et al., 2012; Webb and Lock, 2012); and that increased concentrations of greenhouse gases reduce the 38 
radiative cooling that drives stratiform cloud layers and thereby the cloud amount (Bretherton et al., 2012; 39 
Caldwell and Bretherton, 2009; Stevens and Brenguier, 2009). These mechanisms could explain why models 40 
consistently produce positive low-cloud feedbacks. Among CFMIP GCMs, the feedback parameter ranges 41 
from +0.09 to +0.63 W m–2 K–1, and is largely associated with a reduction in low-cloud amount, albeit with 42 
considerable variability in the spatial structure of these changes (Webb et al., 2012). One 43 
“superparameterized” GCM (Section 7.2.2.1) simulates a negative low-cloud feedback (Wyant et al., 2006; 44 
Wyant et al., 2009), but that model’s representation of low clouds was worse than some conventional GCMs. 45 
 46 
The tendency of both GCMs and process models to produce these positive feedback effects suggests that the 47 
feedback contribution from changes in low clouds is positive. However, the well-known deficiencies in 48 
model representation of low clouds globally, the diversity of model results, the lack of reliable observational 49 
constraints, and the tentative nature of the suggested mechanisms leaves us with low overall confidence in 50 
the sign of the low-cloud feedback contribution. 51 
 52 
7.2.4.3.4 Feedbacks involving changes in cloud optical depth 53 
It has long been suggested that cloud water content could increase in a warmer climate simply due to the 54 
availability of more vapour for condensation in a warmer atmosphere, yielding a negative feedback 55 
(Paltridge, 1980; Somerville and Remer, 1984), but this argument ignores the physics of crucial cloud-56 
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regulating processes like precipitation formation and turbulence. Observational evidence discounting a large 1 
effect of this kind was reported in AR4 (Randall et al., 2007). 2 
 3 
The global-mean net feedback from cloud optical depth changes in CFMIP models (Figure 7.9) scatters 4 
around zero but is slightly positive on average. Optical depths tend to reduce slightly at low and middle 5 
latitudes, but increase consistently at latitudes poleward of 50°, yielding a positive longwave feedback that 6 
slightly outweighs the negative shortwave feedback. These latitude-dependent optical depth changes may be 7 
attributed to phase changes at high latitudes and greater poleward moisture transport (Vavrus et al., 2009), 8 
and possible to poleward shifts of the circulation. 9 
 10 
The phase change contribution arises because at mixed-phase temperatures of –40°C–0°C, cloud ice particles 11 
are typically several-fold larger than cloud water drops (e.g., Mitchell et al., 2010), so a given mass of cloud 12 
ice reflects less sunlight than the same mass of cloud water droplets. As climate warms, the shift from ice to 13 
liquid clouds would raise albedos for a given water mass, and the slower fall speeds of liquid could increase 14 
the water mass. The resulting negative cloud feedback appears in GCMs (Senior and Mitchell, 1993), with a 15 
magnitude that correlates with the simulated amount of cloud ice in mixed-phase clouds (Tsushima et al., 16 
2006). The key physics is however not adequately represented in climate models, so this particular feedback 17 
mechanism is highly uncertain. 18 
 19 
7.2.4.3.5 Feedback from Arctic cloud interactions with sea ice 20 
Arctic clouds, despite their low altitude, have a net warming effect at the surface in the present climate 21 
because their downward emission of infrared radiation over the year outweighs their reflection of sunlight 22 
during the short summer season. They also cool the atmosphere, however, so their effect on the energy 23 
balance of the whole system is ambiguous and depends on the details of the vertical cloud distribution and 24 
the impact of cloud radiative interactions on ice cover (Palm et al., 2010). 25 
 26 
Low cloud amount over the Arctic oceans varies inversely with sea ice amount (open water producing more 27 
cloud) as now confirmed since AR4 by visual cloud reports (Eastman and Warren, 2010) and lidar and radar 28 
observations (Kay and Gettelman, 2009; Palm et al., 2010). The observed effect is weak in boreal summer, 29 
when the melting sea-ice is at a similar temperature to open water and stable boundary layers with extensive 30 
low cloud are common over both surfaces, and strongest in boreal autumn when cold air flowing over 31 
regions of open water stimulates cloud formation by boundary-layer convection (Kay and Gettelman, 2009; 32 
Vavrus et al., 2011). Kay et al. (2011) show that a GCM can represent this seasonal sensitivity of low cloud 33 
to open water, but doing so depends on the details of how boundary-layer clouds are parameterized. Vavrus 34 
et al. (2009) show that in a global warming scenario, GCMs simulate more Arctic low-level cloud in all 35 
seasons, but especially during autumn and winter when open water and very thin sea ice increase 36 
considerably, increasing upward moisture transport to the clouds. 37 
 38 
A negative Arctic cloud feedback was suggested by Liu et al. (2008) on the basis that recent observed 39 
surface warming has been greater in less cloudy areas, but this argument was not tested in a climate model 40 
and does not control for the large correlated effects of weather on both clouds and surface temperature. 41 
Gagen et al. (2011) present tree-ring evidence that summertime Arctic cloud cover was negatively correlated 42 
with Arctic temperatures over the last millennium, which is consistent with the conclusions of the above 43 
studies assuming there was less ice during warmer periods. Gagen et al. (2011) presented this as evidence of 44 
a negative shortwave cloud feedback, but the year-round longwave feedback would likely offset this as noted 45 
above. Note that there are pitfalls to using natural climate variations to infer cloud feedbacks in any case (see 46 
Section 7.2.4.3.7). 47 
 48 
7.2.4.3.6 Rapid adjustment of clouds to a CO2 change 49 
Gregory and Webb (2008) partitioned the response of top-of-atmosphere radiation in GCMs to an 50 
instantaneous doubling of CO2 into a ‘rapid’ (sub-seasonal) adjustment in which the land surface, 51 
atmospheric circulations and clouds respond to the radiative effect of the CO2 increase, and an ‘SST-52 
mediated’ response that develops more slowly as the oceans warm. This distinction is important not only to 53 
help understand what is going on in the models, but because the presence rapid adjustments would cause 54 
clouds to respond slightly differently to a transient climate change (in which SST changes have not caught 55 
up to CO2 changes) or to a climate change caused by other forcings, than they would to the same warming at 56 
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equilibrium driven by CO2. There is also a rapid adjustment of the precipitation field, discussed in Section 1 
7.6.3. 2 
 3 
Gregory and Webb (2008) found that in some climate models, rapid adjustment of clouds can have 4 
comparable top-of-atmosphere radiative effects to the ensuing SST-mediated cloud changes. Andrews and 5 
Forster (2008) found that this behaviour was exceptional, and that on average, rapid cloud adjustments in a 6 
suite of climate models causes less than 20% of their equilibrium radiative feedback; most of these come 7 
from low cloud (Colman and McAvaney, 2011). Webb et al. (2012) and Andrews et al. (2012), however, 8 
each showed using different model ensembles that adjustments contribute half the uncertainty that feedbacks 9 
do, for example 2.2 K uncertainty from feedbacks as compared to 1.08 K from adjustments in the latter 10 
study. Thus a better understanding of rapid adjustments could narrow the uncertainty in climate projections. 11 
 12 
7.2.4.3.7 Observational constraints on global cloud feedback 13 
A number of studies since AR4 have attempted to constrain cloud feedback (or total climate sensitivity) from 14 
observations; here we discuss those using modern cloud, radiation or other measurements. Section 12.5 15 
discusses those based on past temperature data and forcing proxies. 16 
 17 
One approach is to seek observable aspects of present-day cloud behaviour that reveal cloud feedback. 18 
Varying parameters in a GCM sometimes produces changes in cloud feedback that correlate with the 19 
properties of cloud simulated for the present day, but this depends on the GCM (Yokohata et al., 2010), and 20 
the resulting relationships do not hold across multiple models such as those from CMIP3 (Collins et al., 21 
2011; Gettelman et al., 2012a). Among the AR4 models, net cloud feedback is strongly correlated with mid-22 
latitude relative humidity (Volodin, 2008) and with characteristics of the southern-hemisphere storm track 23 
(Trenberth and Fasullo, 2010); if valid either regression relation would imply a relatively strong positive 24 
cloud feedback in reality, but no mechanism has been proposed to explain or validate these empirical 25 
relationships and such apparent skill can easily arise fortuitously (Klocke et al., 2011). Likewise, Clement et 26 
al. (2009) found realistic decadal variations of low cloud over the North Pacific in only one model 27 
(HadGEM1) and argued that the relatively strong cloud feedback in this model should therefore be regarded 28 
as more likely, but provided no evidence for such a link. Chang and Coakley (2007) examined midlatitude 29 
maritime clouds and found cloud thinning with increasing temperature, consistent with a positive feedback, 30 
while Gordon and Norris (2010) found the opposite result following a methodology that tried to isolate 31 
thermal and advective effects. In summary, there is no evidence of a robust link between any of the noted 32 
observables and the global feedback, though some apparent connections are tantalising and are being further 33 
studied. 34 
 35 
Several studies have attempted to derive global climate sensitivity from interannual relationships between 36 
global-mean observations of top-of-atmosphere radiation and surface temperature. One problem with this is 37 
the different spatial character of interannual and long-term warming; another is that the methodology can be 38 
confounded by cloud variations not caused by those of surface temperature (Spencer and Braswell, 2008). A 39 
range of climate sensitivities has been inferred based on such analyses (Forster and Gregory, 2006; Lindzen 40 
and Choi, 2011). Crucially, however, among different GCMs there is no correlation between the interannual 41 
and long-term cloud-temperature relationships (Dessler, 2010), contradicting the basic assumption of these 42 
methods. Many but not all AOGCMs predict relationships that are consistent with observations (Dessler, 43 
2010). More recently there is interest in relating the time-lagged correlations of cloud and temperature to 44 
feedback processes (Spencer and Braswell, 2010) but again these relationships appear to reveal only a 45 
model’s ability to simulate ENSO or other modes of interannual variability properly, which are not obviously 46 
informative about the cloud feedback on long-term global warming (Dessler, 2011). 47 
 48 
While a number of studies have proposed methods to infer the long-term cloud feedback from observed 49 
variability, for a method to be accepted it should have a sound physical basis and be shown to work 50 
consistently when applied to different climate models. No method yet proposed passes both tests. Moreover, 51 
some model studies show that the response of global cloud radiative effect to a global warming is sensitive to 52 
relatively subtle details in the geographic warming pattern, such as the slight hemispheric asymmetry due to 53 
the lag of southern ocean warming relative to northern latitudes (Senior and Mitchell, 2000; Yokohata et al., 54 
2008). Cloud responses to specified uniform ocean warming without CO2 increases are not the same as those 55 
to CO2-induced global warming simulated with more realistic oceans (Ringer et al., 2006), partly because of 56 
rapid adjustments (Section 7.2.4.3.6) and because low clouds also feed back tightly to the underlying surface 57 
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(Caldwell and Bretherton, 2009). Simulated cloud feedbacks also differ significantly between colder and 1 
warmer climates in some models (Crucifix, 2006; Yoshimori et al., 2009). These sensitivities highlight the 2 
challenges facing any attempt to infer long-term cloud feedbacks from simple data analyses. 3 
 4 
7.2.4.4 Feedback Synthesis 5 
 6 
Together, the water-vapour, lapse-rate and cloud feedbacks are the principal determinants of climate 7 
sensitivity. The water-vapour and lapse-rate feedbacks should be thought of as a single phenomenon rather 8 
than in isolation. To estimate a 90% probability range for that feedback, we double the variance of GCM 9 
results about the mean to account for possible common errors among models, to arrive at +1.09 (+0.91 to 10 
+1.27) W m−2 K−1, similar to AR4. Values in this range are supported by a steadily growing body of 11 
observational evidence, model tests, and physical reasoning. Key aspects of the responses of water vapour 12 
and clouds to climate warming now appear to be constrained by large-scale dynamical mechanisms that are 13 
not sensitive to poorly-represented small-scale processes, and as such, are more credible. 14 
 15 
Several cloud feedback mechanisms now appear consistently in GCMs, summarised in Figure 7.10, most 16 
supported by other lines of evidence. They nearly all act in a positive direction. First, high clouds are 17 
expected to rise in altitude and thereby exert a stronger greenhouse effect in warmer climates. This altitude 18 
feedback mechanism is well understood, has theoretical and observational support, occurs consistently in 19 
GCMs and CRMs, and explains about half of the mean positive cloud feedback in GCMs. Second, middle 20 
and high-level cloud cover tends to decrease in warmer climates even within the ITCZ, decreasing the albedo 21 
more than it increases the greenhouse effect thus adding positive feedback. This cannot be tested 22 
observationally but is consistent with anticipated changes to atmospheric water transport. Third, observations 23 
and most models suggest storm tracks shift poleward in a warmer climate, drying the subtropics and 24 
moistening the high latitudes, which causes further positive feedback via a net shift of cloud cover to 25 
latitudes that receive less sunshine. Finally, most GCMs also predict that low cloud amount decreases, 26 
especially in the subtropics, another source of positive feedback though one that differs significantly among 27 
models and lacks a well-accepted theoretical basis. Over middle and high latitudes, GCMs suggest warming-28 
induced transitions from ice to water clouds may cause clouds to become more opaque, but this appears to 29 
have a small net radiative effect. 30 
 31 
[INSERT FIGURE 7.10 HERE] 32 
Figure 7.10: Robust cloud responses to greenhouse warming (those simulated by most models and possessing some 33 
kind of independent support or understanding). Key climatological features (tropopause, freezing level, circulations) are 34 
shown in grey. Changes anticipated in a warmer climate are shown in red (if contributing positive feedback) or brown 35 
(if contributing little or ambiguously to feedback); no robust mechanisms contribute negative feedback. Changes 36 
include rising high cloud tops and melting level, and increased polar cloud cover and/or optical thickness (high 37 
confidence); broadening of the Hadley Cell and/or poleward migration of storm tracks, and narrowing of the ITCZ 38 
(medium confidence); and reduced low-cloud amount and/or optical thickness (low confidence). Confidence 39 
assessments are based on degree of GCM consensus, strength of independent lines of evidence from observations or 40 
process models, and degree of basic understanding. 41 
 42 
Currently, neither cloud process models (CRMs and LES) nor observations provide clear evidence to 43 
contradict or confirm any of the above mechanisms, except as noted. In some cases these models show 44 
stronger low-cloud feedbacks than GCMs, but each model type has limitations, and some GCM biases 45 
suggest positive feedbacks are underestimated. For low clouds, cloud process models suggest a variety of 46 
potentially opposing response mechanisms that may account for the current spread of GCM feedbacks. In 47 
summary we find no evidence to contradict either the cloud or water-vapour-lapse-rate feedback ranges 48 
shown by current GCMs, although the many uncertainties mean that true feedback could still lie outside 49 
these ranges. 50 
 51 
Based on the above synthesis of cloud behaviour, the net radiative feedback due to all cloud types is judged 52 
likely (>66% chance) to be positive. This is reasoned probabilistically as follows. First, since evidence from 53 
observations and process models is mixed as to whether GCM cloud feedback is too strong or too weak 54 
overall, and since the positive feedback found in GCMs comes mostly from mechanisms now supported by 55 
other lines of evidence, the central (most likely) estimate of the total cloud feedback is taken as the mean 56 
from GCMs (+0.8 W m–2 K–1). Second, since there is no accepted basis to discredit individual GCMs, the 57 
probability distribution of the true feedback must be at least as broad as the distribution of GCM results. 58 
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Third, since feedback mechanisms are probably missing from GCMs (particularly involving thin high clouds 1 
or low clouds) and some CRMs suggest feedbacks outside the range in GCMs, the probable range of the 2 
feedback must be broader than its spread in GCMs. We estimate the likely range of this feedback by 3 
doubling the spread (quadrupling the variance) about the mean of the data in Figure 7.9, that is assuming an 4 
uncertainty 170% as large as that encapsulated in the GCM range added to it in quadrature, and assuming 5 
Gaussian errors. This yields a 90% (very likely) range of −0.2 to 1.4 W m–2 K–1, with a 16% probability of a 6 
negative feedback. 7 
 8 
Note that the assessment of feedbacks in this chapter is independent of constraints on climate sensitivity 9 
from observed trends or palaeoclimate information discussed in Section 12.4. 10 
 11 
7.2.5 Anthropogenic Sources of Moisture and Cloudiness 12 
 13 
Human activity can be a source of additional cloudiness through specific processes involving a source of 14 
water vapour in the atmosphere. We discuss here the impact of aviation and irrigation on water vapour and 15 
cloudiness. The impact of water vapour sources from combustion at the Earth’s surface is thought to be 16 
negligible. Changes to the hydrological cycle because of land use change are not discussed. 17 
 18 
7.2.5.1 Contrails and Contrail-Induced Cirrus 19 
 20 
Aviation jet engines emit hot moist air, which can form line shaped persistent condensation trails (contrails) 21 
in environments that are supersaturated with respect to ice and colder than –40°C. The contrails are 22 

composed of ice crystals that are typically smaller than those of background cirrus (Frömming et al., 2011; 23 
Heymsfield et al., 2010). Their effect on longwave radiation dominates over their shortwave effect 24 
(Burkhardt and Kärcher, 2011; Rap et al., 2010a; Stuber and Forster, 2007) but models disagree on the 25 
relative importance of the two effects. Contrails have been observed to spread into large cirrus sheets which 26 
may persist for several hours, and observational studies confirm their overall positive net RF impact 27 
(Haywood et al., 2009). Aerosol emitted within the aircraft exhaust may also affect high-level cloudiness. 28 
This last effect is classified as an aerosol-cloud interaction and is discussed in Section 7.4.4. Rap et al. 29 
(2010b) confirmed the assessment that aviation contrails are very unlikely, at current levels of coverage, to 30 
have an observable effect on surface temperature or diurnal temperature range. 31 
  32 
Forster et al. (2007) estimated the 2005 RF from contrails as +0.01 (–0.007 to +0.02) W m–2 ,and quoted 33 
Sausen et al. (2005) to update the 2000 forcing for aviation-induced cirrus (including linear contrails) to 34 
+0.03 (+0.01 to +0.08) W m–2 . Lee et al. (2009) scaled these estimates upward 18% to account for revised 35 
fuel use estimates, propulsive efficiency and flight routes for year 2005. Kärcher et al. (2010) obtain a range 36 
of +0.008 to +0.020 W m–2 for contrails in the year 2000. Traffic distance has further increased by 22% 37 
between 2005 and 2010, so that overall we adopt a RF estimate of +0.02 (+0.01 to +0.03) W m–2 for 38 
persistent (linear) contrails for 2010. 39 
 40 
Satellite estimates of contrail-induced cirrus forcing estimates (e.g., Boucher, 1999) may unintentionally 41 
include cirrus changes not directly caused by aviation. Schumann and Graf (2012) constrained their model 42 
with observations of the diurnal cycle of contrails and cirrus in a region with high air traffic relative to a 43 
region with little air traffic, and estimated an AF of +0.045 to +0.075 W m–2 for contrails and contrail-44 
induced cirrus in 2006, but their model has a large SW contribution, suggesting larger estimates are possible. 45 
An alternative approach was taken by Burkhardt and Kärcher (2011), who estimated for year 2002 a global 46 
RF of +0.03 W m–2 from contrails and contrail cirrus within a climate model (Burkhardt and Kärcher, 2009), 47 
after compensating for reduced background cirrus cloudiness in the main traffic areas. Combining these 48 
estimates with uncertainties on spreading rate, optical depth, ice particle shape and radiative transfer 49 
(Markowicz and Witek, 2011) and accounting for the ongoing increase in air traffic, we assess a combined 50 
contrail and contrail-induced cirrus AF for year 2010 to be +0.05 (+0.02 to +0.15) W m–2. 51 
 52 
7.2.5.2 Irrigation-Induced Cloudiness 53 
 54 
Boucher et al. (2004) estimated a global AF due to water vapour from irrigation in the range of +0.03 to 55 
+0.10 W m–2 but the net climate effect was dominated by the evaporative cooling at the surface and by 56 
atmospheric thermal responses to low-level humidification. Regional surface cooling was confirmed by a 57 
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number of more recent regional and global studies (Kueppers et al., 2007; Lobell et al., 2009). The resulting 1 
increase in water vapour may induce a small enhancement in precipitation downwind of the major irrigation 2 
areas (Puma and Cook, 2010), as well as some regional circulation patterns (Kueppers et al., 2007). Sacks et 3 
al. (2009) reported a 0.001 increase in cloud fraction over land (0.002 over irrigated land). This suggests an 4 
AF no more negative than –0.1 W m-2 with very low confidence. 5 
 6 
7.3 Aerosols 7 
 8 
The section assesses the role of aerosol particles (aerosols) in the climate system, focusing on aerosol 9 
processes and properties, as well as other factors, that influence aerosol-radiation and aerosol-cloud 10 
interactions. Processes directly relevant to aerosol-cloud interactions are discussed in Section 7.4, and 11 
estimates of aerosol radiative and adjusted forcings are assessed in Section 7.5. The time evolution of 12 
aerosols and their forcing are discussed in Chapters 2 and 8, with Chapter 8 also covering changes in natural 13 
volcanic aerosols. 14 
 15 
7.3.1 Aerosols in the Present-Day Climate System 16 
 17 
7.3.1.1 Aerosol Formation and Aerosol Types 18 
 19 
Atmospheric aerosols, whether natural or anthropogenic, originate from two different pathways: emissions of 20 
primary particulate matter and formation of secondary particulate matter from gaseous precursors (Figure 21 
7.11). The main constituents of the atmospheric aerosol are inorganic species (such as sulphate, nitrate, sea 22 
salt), organic species (also termed organic carbon or organic aerosol), black carbon (BC, a distinct type of 23 
carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels), and 24 
mineral species (mostly desert dust). Dust, sea spray and BC are introduced into the atmosphere as primary 25 
particles, whereas non-sea-salt sulphate and nitrate are predominantly from secondary aerosol formation 26 
processes. Organic aerosol (OA) has both significant primary and secondary sources. In the present-day 27 
atmosphere, the majority of BC, sulphate and nitrate come from anthropogenic sources, whereas sea spray 28 
and most mineral aerosol is of natural origin. Atmospheric OA is influenced by both natural and 29 
anthropogenic sources of volatile organic compounds. Emission rates of aerosols and aerosol precursors are 30 
summarized in Table 7.2. The characteristics and role of the main aerosol species are listed in Table 7.2. 31 
 32 
[INSERT FIGURE 7.11 HERE] 33 
Figure 7.11: Overview of atmospheric aerosol processes and environmental variables influencing aerosol-radiation and 34 
aerosol-cloud interactions. Gas-phase processes and variables are highlighted in red while particulate-phase processes 35 
and variables appear in green. Although this figure shows a linear chain of processes from aerosols to forcings, it is 36 
increasingly recognized that aerosols and clouds form a coupled system with two-way interactions. 37 
 38 
[INSERT TABLE 7.2 HERE] 39 
Table 7.2: Global and regional anthropogenic and natural emissions important for atmospheric aerosols. For the 40 
anthropogenic components the maximum and minimum values from available inventories are presented according to 41 
Granier et al. (2011). Units are Tg yr–1 except for BVOCs in TgC yr–1 and DMS in TgS yr–1. Dust and sea-spray 42 
estimates span the range in the historical CMIP5 simulations. SOA range is taken from Spracklen et al. (2011). BVOC 43 
range from Arneth et al. (2008). 44 
 45 
[INSERT TABLE 7.3 HERE] 46 
Table 7.3: Key aerosol properties of the main aerosol species in the troposphere. Brown carbon is a particular type of 47 
OA but is treated here as an additional component because it is light absorbing. The estimate of aerosol burdens and 48 
lifetimes in the troposphere are based on the AeroCom models, except for primary biological aerosol particles (PBAP), 49 
which are treated by analogy to other coarse mode aerosol types. 50 
 51 
7.3.1.2 Aerosol Climatology 52 
 53 
Since the AR4, new and improved observational aerosol datasets have emerged. A number of field 54 
experiments have taken place such as the Intercontinental Chemical Transport Experiment (INTEX, 55 
Bergstrom et al., 2010; Logan et al., 2010), African Monsoon Multidisciplinary Analysis (AMMA, Hansell 56 
et al., 2010; Jeong et al., 2008), Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB, 57 
2008 and references therein), Megacity Impact on Regional and Global Environments field experiment 58 
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(MILAGRO, Paredes-Miranda et al., 2009), Geostationary Earth Radiation Budget Inter-comparisons of 1 
Longwave and Shortwave (GERBILS, Christopher et al., 2009), Research of the Composition of the 2 
Troposphere from Aircraft and Satellites (ARCTAS, Lyapustin et al., 2010), the Amazonian Aerosol 3 
Characterization Experiment 2008 (AMAZA-08, Martin et al., 2010a) and Atmospheric Brown Clouds 4 
(ABC, Engling and Gelencsér, 2010; Nakajima et al., 2007), which have improved our understanding of 5 
regional aerosol properties. 6 
 7 
Long-term aerosol mass concentrations are also measured more systematically at the surface by global and 8 
regional networks (see Chapter 2), and there are institutional efforts to improve the coordination and quality 9 
assurance of the measurements. A survey of the main aerosol types can be constructed from such 10 
measurements (e.g., Jimenez et al., 2009; Figure 7.12). Such analyses show a wide spatial variability in 11 
aerosol concentrations, dominant aerosol type, and aerosol composition worldwide. Mineral dust dominates 12 
the aerosol mass over some continental regions with relatively higher concentrations in urban S. Asia, 13 
accounting for about 35% of the total aerosol mass with diameter smaller than 10 µm. In the rural U.S. and 14 

South America, OC contributes the largest fraction to the atmospheric aerosol (i.e., 20% or more), while in 15 
other areas of the world the OC fraction ranks second or third with a mean of about16%. Sulfate normally 16 
accounts for about 10–30% by mass, except for the areas in rural Africa, urban Oceania and South America 17 
with less than about 10%. The mass fractions of nitrate and ammonium are only around 6% and 4% on 18 
average, respectively. In most areas, BC fractions are less than 5% of the aerosol mass, although this 19 
percentage may be larger (about 12%) in South America, urban Africa, urban Europe, South-East and East 20 
Asia and urban Oceania due to the larger impact of combustion sources. Sea-salt aerosols can be dominant at 21 
oceanic remote sites with 50-70% of aerosol mass. 22 
 23 
[INSERT FIGURE 7.12 HERE] 24 
Figure 7.12: Bar chart plots summarizing the annual, seasonal or monthly mean mass surface concentration (µg m–3) of 25 
seven major aerosol components for particles with diameter smaller than 10 µm, from various rural and urban sites in 26 
six continental areas of the world with at least an entire year of data, and two marine sites. For each location, the panels 27 
represent the median, the 25–75 percentiles (box), and the 10–90 percentiles (whiskers) for each aerosol component. 28 
These include: 1) urban North America. (Chow et al., 1993; Ito et al., 2004; Kim et al., 2000; Liu et al., 2005; Malm 29 
and Schichtel, 2004; Sawant et al., 2004); rural North America (Chow et al., 1993; Liu et al., 2005; Malm and 30 
Schichtel, 2004; Malm et al., 1994); 2) marine northern hemisphere Atlantic Ocean (Ovadnevaite et al., 2011; Rinaldi et 31 
al., 2009); 3) urban Europe (Hueglin et al., 2005; Lenschow et al., 2001; Lodhi et al., 2009; Lonati et al., 2005; Perez et 32 
al., 2008; Putaud et al., 2004; Querol et al., 2006; Querol et al., 2008; Querol et al., 2001; Querol et al., 2004; 33 
Rodriguez et al., 2002; Rodrıguez et al., 2004; Roosli et al., 2001; Viana et al., 2006; Viana et al., 2007; Yin and 34 
Harrison, 2008); rural Europe (Gullu et al., 2000; Hueglin et al., 2005; Kocak et al., 2007; Putaud et al., 2004; Puxbaum 35 
et al., 2004; Querol et al., 2009; Querol et al., 2001; Querol et al., 2004; Rodriguez et al., 2002; Rodrıguez et al., 2004; 36 
Salvador et al., 2007; Theodosi et al., 2010; Viana et al., 2008; Yin and Harrison, 2008; Yttri, 2007); 4) high Asia, with 37 
altitude larger than 1680 m. (Carrico et al., 2003; Decesari et al., 2010; Ming et al., 2007a; Qu et al., 2008; Ram et al., 38 
2010; Rastogi and Sarin, 2005; Rengarajan et al., 2007; Shresth et al., 2000; Zhang et al., 2001; Zhang et al., 2012c; 39 
Zhang et al., 2008); urban South Asia (Chakraborty and Gupta, 2010; Khare and Baruah, 2010; Kumar et al., 2007; 40 
Lodhi et al., 2009; Raman et al., 2010; Rastogi and Sarin, 2005; Safai et al., 2010; Stone et al., 2010); urban China 41 
(Cheng et al., 2000; Hagler et al., 2006; Oanh et al., 2006; Wang et al., 2003; Wang et al., 2005b; Wang et al., 2006; 42 
Xiao and Liu, 2004; Yao et al., 2002; Ye et al., 2003; Zhang et al., 2002; Zhang et al., 2012c; Zhang et al., 2011); rural 43 
China (Hagler et al., 2006; Hu et al., 2002; Zhang et al., 2012c) [PANEL MISSING]; urban China (Cheng et al., 2000; 44 
Hagler et al., 2006; Oanh et al., 2006; Wang et al., 2003; Wang et al., 2005b; Wang et al., 2006; Xiao and Liu, 2004; 45 
Yao et al., 2002; Ye et al., 2003; Zhang et al., 2002; Zhang et al., 2012c; Zhang et al., 2011); South-East and East Asia 46 
(Han et al., 2008; Khan et al., 2010; Kim et al., 2007; Lee and Kang, 2001; Oanh et al., 2006); 5) South America 47 
(Artaxo et al., 1998; Artaxo et al., 2002; Bourotte et al., 2007; Celis et al., 2004; Fuzzi et al., 2007; Gioda et al., 2011; 48 
Mariani and Mello, 2007; Martin et al., 2010b; Morales et al., 1998; Souza et al., 2010); 6) urban Africa (Favez et al., 49 
2008; Mkoma, 2008; Mkoma et al., 2009b); rural Africa (Maenhaut et al., 1996; Mkoma, 2008; Mkoma et al., 2009a; 50 
Mkoma et al., 2009b; Nyanganyura et al., 2007; Weinstein et al., 2010); 7) marine southern hemisphere Indian Ocean 51 
(Rinaldi et al., 2011; Sciare et al., 2009); 8) urban Oceania (Chan et al., 1997; Maenhaut et al., 2000; Radhi et al., 2010; 52 
Wang et al., 2005a; Wang and Shooter, 2001). 53 

 54 
Aerosol optical depth (AOD), which is related to the column-integrated aerosol amount, is measured by the 55 
Aerosol Robotic Network (AERONET, Holben et al., 1998; Holben et al., 2001), other ground-based 56 
networks, and a number of satellite-based sensors. Retrievals from aerosol-dedicated instruments such as 57 
MODIS (Kleidman et al., 2012; Levy et al., 2010; Remer et al., 2005), MISR (Kahn et al., 2005; Kahn et al., 58 
2007) and POLDER/PARASOL (Tanré et al., 2011) are used preferentially to less specialised 59 
instrumentation such as AVHRR (Geogdzhayev et al., 2002; Jeong and Li, 2005), TOMS (Torres et al., 60 
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1998; Torres et al., 2002) and ATSR/AATSR although the latter are useful because of their longer 1 
measurement records (see Chapter 2). While each AOD retrieval shows some skill against more accurate 2 
AERONET measurements, there are still large differences in regional and seasonal patterns because of 3 
differences in sampling, cloud screening and treatment of the surface reflectivity (Kokhanovsky et al., 2010). 4 
The global but incomplete satellite measurements can be combined with information from global aerosol 5 
models through data assimilation techniques (e.g., Benedetti et al., 2009; Figure 7.13a). Due to the 6 
heterogeneity in their sources, their short lifetime and the dependence of sinks on the meteorology, aerosol 7 
distributions show large variations on daily, seasonal and interannual scales. 8 
 9 
[INSERT FIGURE 7.13 HERE] 10 
Figure 7.13: a) spatial distribution of the AOD (unitless) from the MACC model with assimilation of MODIS AOD 11 
(Benedetti et al., 2009; Morcrette et al., 2009) for the year 2010; b) to e) latitudinal vertical cross-sections of the aerosol 12 
extinction coefficient (km–1) for four longitudinal bands (180°W to 120°W, 120°W to 60°W, 20°W to 40°E, and 60°E 13 
to 120°E) from the CALIOP instrument (Winker et al., 2009). The black circles show the extinction scale height for 14 
90% (top) and 63% (bottom) of the average AOD. 15 
 16 
Spaceborne lidars, such as on the CALIPSO mission (Winker et al., 2009), now provide a climatology of the 17 
aerosol extinction coefficient (Figure 7.13b-d), highlighting that over most regions the majority of the 18 
optically-active aerosol resides in the lowest 1–2 km. There is less information available on the vertical 19 
profile of aerosol number and mass concentrations, although a number of field experiments involving 20 
research aircraft have measured aerosol concentrations. In particular BC mixing ratios have been measured 21 
during the ARCTAS (Jacob et al., 2010), ARCPAC (Warneke et al., 2010), A-FORCE and HIPPO1 22 
(Schwarz et al., 2006; Schwarz et al., 2010) campaigns (Figure 7.14). Commercial aircraft also report total 23 
aerosol number concentrations (Brenninkmeijer et al., 2007). 24 
 25 
[INSERT FIGURE 7.14 HERE] 26 
Figure 7.14: Comparison of profiles of BC mass mixing ratios (ng kg–1) as measured by airborne SP2 instruments 27 
during the ARCTAS (Jacob et al., 2010), HIPPO1 (Schwarz et al., 2006; Schwarz et al., 2010) and A-FORCE (Oshima 28 
et al., 2012) campaigns and as simulated by a range of AeroCom models. The model values are averages for the month 29 
corresponding to each field campaign. 30 
 31 
7.3.2 Aerosol Sources and Processes 32 
 33 
7.3.2.1 Aerosol Sources 34 
 35 
Sea spray particles comprise sea salt and primary marine matter, and are produced at the sea surface by 36 
bubble bursting induced mostly by breaking waves. The effective emission flux of sea spray particles to the 37 
atmosphere depends on the surface wind speed and atmospheric stability, and to a lesser extent on the 38 
temperature and composition of the sea water. Our understanding of sea spray emissions has increased 39 
substantially since AR4; however, process-based estimates of the total mass, number size distribution and 40 
chemical composition of emitted sea spray particles continue to have large uncertainties (de Leeuw et al., 41 
2011; Table 7.2). It has been shown that sea spray can contain primary organic matter, preferentially in the 42 
submicronic size range, the amount of which depends on biological activity in ocean waters (Facchini et al., 43 
2008). Uncertainty in the source translates into a large uncertainty in the natural level of aerosol number 44 
concentration in the marine atmosphere which, unlike the aerosol optical depth and sea spray mass 45 
concentrations, is more difficult to constrain from space observations (Jaeglé et al., 2011). 46 
 47 
Dust particles are produced mainly by disintegration of aggregates following creeping and saltation of larger 48 
soil particles over desert and other arid surfaces (Kok, 2011; Zhao et al., 2006). The magnitude of dust 49 
emissions to the atmosphere depends on the surface wind speed and many soil-related factors such as its 50 
texture, moisture and vegetation cover. The range of estimates for the global dust emissions spans a factor of 51 
about 5 (Huneeus et al., 2011; Table 7.2). The fraction of dust coming from anthropogenic sources remain ill 52 
quantified although some recent satellite observations suggest it could be 20 to 25% (Ginoux et al., 2012a; 53 
Ginoux et al., 2012b). 54 
 55 
Primary biological aerosol particles (PBAP) include bacteria, pollen, fungal spores, lichen, viruses and 56 
fragments of animals and plants (Després et al., 2012). Most of these particles are emitted in the coarse mode 57 
(Pöschl et al., 2010) and the contribution to the accumulation mode is likely to be very small. There are only 58 
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a few estimates of the global flux of PBAP and these are poorly constrained (Burrows et al., 2009; Heald and 1 
Spracklen, 2009; see Table 7.2). 2 
 3 
The main natural aerosol precursors are dimethylsulfide (DMS) emitted by the oceans and biogenic volatile 4 
organic compounds (BVOC) emitted mainly by the terrestrial biosphere. BVOC emissions depend on the 5 
amount and type of vegetation, temperature, radiation and several environmental factors such as the ambient 6 
CO2 concentration (Grote and Niinemets, 2008; Pacifico et al., 2009). While speciated BVOC emission 7 
inventories have been derived for some continental regions, global emission inventories or schemes are 8 
available only for isoprene and some monoterpenes (Guenther et al., 2006; Muller et al., 2008). The total 9 
global BVOC emissions have large uncertainties, despite the apparent convergence in different model-based 10 
estimates (Arneth et al., 2008). 11 
 12 
The contribution of secondary organic aerosol (SOA) to the total organic aerosol is larger than previously 13 
thought, but the split between primary organic aerosol (POA) and SOA has remained somewhat ambiguous 14 
due to atmospheric transformation processes affecting both these components (Jimenez et al., 2009; 15 
Robinson et al., 2007). Globally, most of atmospheric SOA is expected to originate from biogenic sources, 16 
even though anthropogenic sources could be equally important at northern midlatitudes (De Gouw and 17 
Jimenez, 2009; Lin et al., 2012). Recent studies suggest that the SOA formation from BVOCs may be 18 
enhanced substantially by anthropogenic pollution due to i) high nitrogen oxide concentrations enhancing 19 
BVOC oxidation, and ii) high anthropogenic POA concentrations that facilitate transformation of VOCs to 20 
the particle phase (Carlton et al., 2010; Heald et al., 2011; Spracklen et al., 2011). The uncertainty range of 21 
atmospheric SOA formation has decreased since AR4 but is still larger than a factor of 5 (Farina et al., 2010; 22 
Hallquist et al., 2009; Heald et al., 2010; Spracklen et al., 2011; Table 7.2). 23 
 24 
Anthropogenic sources of aerosols (BC, POA) and aerosol precursors (sulphur dioxide, ammonia, nitric acid 25 
and VOCs) are known from emission inventories (Table 7.2). They are generally better constrained than 26 
natural sources, exceptions being anthropogenic sources of BC, which are likely to be underestimated (Bond 27 
et al., 2012), and anthropogenic emissions of some VOCs, fly-ash and dust which are still poorly known. 28 
Since AR4, remote sensing by satellites has been increasingly used to constrain natural and anthropogenic 29 
aerosol and aerosol precursor emissions (e.g., Dubovik et al., 2008; Huneeus et al., 2012; Jaeglé et al., 2011). 30 
 31 
7.3.2.2 Aerosol Processes 32 
 33 
New particle formation is the process by which low-volatility vapors nucleate into stable embryos, which 34 
under certain condensable vapor regimes, can grow rapidly to produce nanometre-sized aerosol particles. 35 
Since AR4, substantial progress in our understanding of atmospheric nucleation and new particle formation 36 
has been made (Zhang et al., 2012b). Multiple lines of evidence indicate that while sulfuric acid is the main 37 
driver of nucleation (Kerminen et al., 2010; Sipila et al., 2010), the nucleation rate is affected by ammonia 38 
and amines (Kirkby et al., 2011; Kurten et al., 2008; Smith et al., 2010; Yu et al., 2012) as well as low-39 
volatile organic vapors (Metzger et al., 2010; Paasonen et al., 2010; Wang et al., 2010a). Neutral nucleation 40 
pathways are very likely to dominate over ion-induced nucleation in continental boundary layers, but the 41 
situation might be different higher up in the atmosphere (Hirsikko et al., 2011; Kazil et al., 2010). 42 
 43 
Condensation is the main process transferring low-volatile vapors between the gas phase and aerosol 44 
particles, and also the dominant process for growth to larger sizes. The growth of the smallest particles 45 
depends crucially on the condensation of organic vapors (Riipinen et al., 2011), and is therefore tied strongly 46 
with atmospheric SOA formation discussed in Section 7.3.3.1. The treatment of condensation of semi-47 
volatile compounds, such as ammonium nitrate and most organic vapors, remains a challenge in climate 48 
modeling. 49 
 50 
Small aerosol particles collide with one other and stick together. This process, termed Brownian coagulation, 51 
affects the aerosol mixing state and is the main sink for the smallest aerosol particles. In locations where 52 
aerosol lifetimes are long and amounts of condensable vapors are low, such as in the stratosphere and large 53 
parts of the free troposphere, coagulation can contribute significantly to aerosol growth. 54 
 55 
Since AR4, observations of atmospheric nucleation and subsequent growth of nucleated particles to larger 56 
sizes have been increasingly reported in different atmospheric environments (Kulmala and Kerminen, 2008; 57 
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Manninen et al., 2010; O'Dowd et al., 2010). Global model studies suggest that after their growth in the 1 
atmosphere, nucleated particles have a large impact on the cloud condensation nuclei (CCN) concentrations 2 
(Merikanto et al., 2009; Pierce and Adams, 2009b; Spracklen et al., 2008; Yu and Luo, 2009) and potentially 3 
also on cloud droplet number concentrations and aerosol-cloud interactions (Kazil et al., 2010; Makkonen et 4 
al., 2012; Wang and Penner, 2009). Quantifying the climatic effects caused by atmospheric nucleation 5 
remain, however, very difficult because these effects depend in a non-linear way on the nucleation rate, the 6 
survival probability of nucleated particles against coagulation, the growth of these particles to larger sizes, 7 
and the number concentration and size distribution of primary particle emissions (Chang et al., 2009; 8 
Reddington et al., 2011; Spracklen et al., 2010). 9 
 10 
Cloud processing affects the number concentration, composition, size and mixing state of atmospheric 11 
aerosol particles via aqueous-phase chemistry taking place inside clouds, via altering aerosol precursor 12 
chemistry around and below clouds, and via different aerosol-cloud hydrometeor interactions. A more 13 
detailed discussion on aerosol-cloud interactions will be presented in Section 7.4. 14 
 15 
The understanding and modelling of aerosol sinks has seen less progress since AR4. Improved dry 16 
deposition models, which depend on the particle size as well as the roughness properties of the surface, have 17 
been developed and are increasingly being used in global aerosol models (Feng, 2008; Kerkweg et al., 2006; 18 
Petroff and Zhang, 2010). For the largest particles in the coarse mode, it is important to consider 19 
sedimentation throughout the atmosphere and its role in dry deposition at the surface. The uncertainty in the 20 
estimate of wet deposition (in-cloud and below-cloud scavenging) is controlled by the uncertainties in the 21 
prediction of the amount of precipitation, the size and to some extent the chemical composition of particles. 22 
For insoluble primary particles like BC and dust, wet deposition also depends strongly on their degree of 23 
mixing with soluble compounds. Parameterization of wet deposition of aerosols remains a key source of 24 
uncertainty in aerosol models, which affects the vertical distribution and long-range transport of aerosols 25 
(Lee et al., 2011; Vignati et al., 2010), with further impact on model estimates of aerosol forcings. It should 26 
be noted however that, when the aerosol source term is known, aerosol sinks can be adjusted in global 27 
aerosol models by constraining aerosol concentrations against observations, which helps to limit the impact 28 
of the very large uncertainties on aerosol sources and sink processes. 29 
 30 
7.3.3 Progresses and Gaps in Understanding Climate Relevant Aerosol Properties 31 

 32 
The climate effects of atmospheric aerosol particles depend on their atmospheric distribution, along with 33 
their hygroscopicity, optical properties and ability to act as CCN and ice nuclei (IN). Key quantities for 34 
aerosol optical and cloud forming properties are the particle number size distribution, chemical composition, 35 
mixing state and shape. These properties are determined by a complex interplay between their sources, 36 
atmospheric transformation processes and their removal from the atmosphere (Section 7.3.2 and Figure 37 
7.11). Since AR4, measurement of some of the key aerosols properties has been greatly improved in 38 
laboratory and field experiments using advanced instrumentation, which allows for instance the analysis of 39 
individual particles. These experimental studies have in turn stimulated improvement in the model 40 
representations of the aerosol physical, chemical and optical properties. We focus our assessment on some of 41 
the key issues where there has been progress since AR4. 42 

 43 
7.3.3.1 Chemical Composition and Mixing State 44 
 45 
Research on the climate impacts of aerosols has moved further away from the simple paradigm of externally-46 
mixed sulphate, BC and biomass burning aerosols. Although the role of inorganic aerosols as an important 47 
anthropogenic contributor to aerosol-radiation and aerosol-cloud interactions has not been questioned, BC 48 
and organics have received increasing attention. 49 
 50 
The physical properties of BC (strongly light-absorbing, refractory with a vaporization temperature near 400 51 
K, aggregate in morphology, insoluble in most organic solvents) allow a strict definition at least in principle 52 
(Bond et al., 2012). Direct measurement of individual BC-containing particles is possible with a laser-53 
induced incandescence (also called SP2, Gao et al., 2007; Moteki and Kondo, 2010; Schwarz et al., 2008b), 54 
which has enabled accurate measurements of the size of BC cores, as well as total BC mass concentrations. 55 
Condensation of gas-phase compounds on BC and coagulation with other particles alter the mixing state of 56 
BC (e.g., Adachi et al., 2010; Li et al., 2003; Pósfai et al., 2003), which can make internally mixed BC in 57 
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polluted urban air on a timescale of about 12 h (McMeeking et al., 2010; Moteki et al., 2007). The resulting 1 
BC-containing particles could become hygroscopic, which can lead to reduced lifetime and atmospheric 2 
loading (Stier et al., 2006). Koch et al. (2009b) and Schwarz et al. (2010) used airborne measurements to 3 
evaluate AeroCom model simulations of the vertical distribution of BC aerosol in many regions, and found 4 
that most models simulate too much BC in the upper troposphere (Schwarz et al., 2010, see Figure 7.14). 5 

 6 
Formation processes of OA remain highly uncertain, which is a major weakness in the present understanding 7 
and model representation of atmospheric aerosols (Hallquist et al., 2009; Kanakidou et al., 2005). 8 
Measurements by aerosol mass spectrometers have provided some insights into sources and atmospheric 9 
processing of OA (Lanz et al., 2007; Ulbrich et al., 2009; Zhang et al., 2005a). Measurements at continental 10 
midlatitudes including urban and rural/remote air suggest that the majority of SOA is likely to be oxygenated 11 
OA (Zhang et al., 2007a; Zhang et al., 2005b). Measurements within and downstream of urban air indicate 12 
that under most circumstances SOA substantially contributes to the total OA mass (de Gouw et al., 2005; 13 
Volkamer et al., 2006; Zhang et al., 2007a). Some of the OA is light absorbing and can be referred to as 14 
brown carbon (BrC, Andreae and Gelencser, 2006). The absorption properties of BrC can be attributed to 15 
water soluble organic compounds and humic-like substances (Graber and Rudich, 2006; Kirchstetter et al., 16 
2004), although they are poorly quantified (Alexander et al., 2008; Flowers et al., 2010). 17 

 18 
There is a large range in the complexity with which OA is represented in global aerosol models. Some 19 
complex, yet still parameterized, chemical schemes have been developed recently which account for 20 
multigenerational oxidation (Donahue et al., 2011; Jimenez et al., 2009; Robinson et al., 2007). Some 21 
regional and global models use semi-empirical schemes, where semi- or non-volatile organic compounds 22 
(SVOC) are produced from parent VOCs by oxidation processes and partitioned between the aerosol and gas 23 
phases (Fan et al., 2005; Heald et al., 2005; Russell and Allen, 2005; Tsigaridis and Kanakidou, 2003). The 24 
representation of SOA in many of the models used in CMIP5 is still very crude in that the source terms are 25 
prescribed and/or the models ignore the complex chemical and aging processes (Hennigan et al., 2009), but 26 
the impact of these simplifications on aerosol forcing estimates is unclear. 27 

 28 
There are multiple observations that show co-existence of external and internal mixtures relatively soon after 29 
emission (Hara et al., 2003; Schwarz et al., 2008a; Twohy and Anderson, 2008). Generally, in biomass 30 
burning aerosol, organic compounds and black carbon were frequently found to be internally mixed with 31 
ammonium, nitrate, and sulphate (Deboudt et al., 2010; Pratt and Prather, 2010). Studies over urban 32 
locations revealed that as much as 90% of the particles are internally mixed with secondary inorganic species 33 
(Bi et al., 2011). Likewise there is evidence of internal mixing between dust and biomass burning aerosols 34 
when these aerosol types age together (Hand et al., 2010). In sea-spray the primary organic matter is mixed 35 
with the sea salt with increasing percentage mass contribution in submicron sizes with decreasing particle 36 
size. Studies have shown that the state of mixing can alter particle hygroscopicity and hence their ability to 37 
act as CCN (Wex et al., 2010). 38 
 39 
7.3.3.2 Size Distribution and Optical Properties 40 
 41 
Aerosol size distribution is one of a key parameter determining both the aerosol spectral optical and CCN 42 
properties. Since AR4 much effort has been put on measuring and simulating the aerosol number rather than 43 
volume size distribution. For instance, number size distributions in the submicron range (30-500 nm) were 44 
measured at 24 sites in Europe for two years (Asmi et al., 2011), although systematic measurements of this 45 
parameter are still limited in other regions. Validation studies show agreement between column-averaged 46 
volume size distribution from sun photometer measurements (Dubovik et al., 2006) and direct in situ 47 
(surface as well as aircraft-based) measurements (Gerasopoulos et al., 2007; Haywood et al., 2011; Radhi et 48 
al., 2010; Smirnov et al., 2011), but these inversion products have not been comprehensively validated. 49 
 50 
The aerosol extinction coefficient depends on aerosol size distribution, aerosol refractive index and mixing 51 
state. Humidification of internally-mixed aerosols as the RH increases, further influences their light 52 
scattering and absorption properties through changes in particle shape, size, and refractive index (Freney et 53 
al., 2010). Lidars provide further measurements of the vertical profile of aerosol extinction coefficient. Yu et 54 
al. (2010) and Koffi et al. (2012) found that global aerosol models tend to have a positive bias on the aerosol 55 
extinction scale height in some (but not all) regions, resulting in an overestimate of aerosol concentrations 56 
above 6 km. The vertical integral of the extinction ceofficient is the aerosol optical depth or AOD. It is a key 57 
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ingredient to estimate aerosol radiative effects (see Section 7.3.4) and can be measured to a good accuracy at 1 
particular locations from sunphotometry. Satellite retrievals of AOD are more uncertain. While error 2 
estimates exist for individual measurements (Kleidman et al., 2012; Remer et al., 2005), the uncertainty on 3 
the global-mean AOD can only be obtained from the spread between different satellite retrievals (see Section 4 
7.3.1.2) or model simulations. This remains a source of uncertainty when estimating aerosol-radiation 5 
interactions, more so for the anthropogenic AOD which is more difficult to constrain from observations (Su 6 
et al., 2012). 7 
 8 
Aerosol absorption is another key climate-relevant aerosol property. Earlier in-situ methods to measure 9 
absorption suffered from important uncertainties (Moosmüller et al., 2009). Recent measurements using 10 
photo-acoustic methods and laser-induced incandescence methods are more accurate but remain sparse. 11 
Coating of soluble material over a primary aerosol such as a BC or dust core enhance the BC mass 12 
absorption efficiency by up to a factor of 2 (Bond and Bergstrom, 2006; Cross et al., 2010), with typical 13 
values of about 8–20 m2 g–1 at a wavelength of 532 nm. Absorption AOD can be retrieved from 14 
sunphotometer measurements in situations where AOD is larger than 0.2. Koch et al. (2009b) used 15 
AERONET retrievals of aerosol AOD to show that most AeroCom models underestimate absorption in many 16 
regions, but there remain representativeness issues when comparing point observations to a model 17 
climatology. 18 
 19 
7.3.3.3 CCN Properties of Atmospheric Aerosols 20 
 21 
A subset of aerosol particles acts as CCN. The ability of an aerosol particle to take up water and 22 
subsequently activate is determined by its size and composition. Whether these particles eventually become 23 
cloud droplets or not, understanding the water vapour uptake of aerosol is an important step in assessing 24 
RFari. Common CCN in the atmosphere are composed of sea salt, sulphates and sulphuric acid, nitrate and 25 
some organics (Table 7.3). CCN activity of inorganic aerosols is relatively well understood. Lately most 26 
attention has been paid to the CCN activity of mixed organic/inorganic aerosols (e.g., King et al., 2010; 27 
Prisle et al., 2010). Uncertainties in our current understanding of CCN properties are associated with SOA 28 
(Good et al., 2010), mainly because OA is still poorly characterized (Jimenez et al., 2009). For SOA it is not 29 
clear how important surface tension effects and bulk-to-surface partitioning are, and if the water activity 30 
coefficient changes significantly as a function of the solute concentration (Good et al., 2010; Prisle et al., 31 
2008). The size of the CCN has been found to be more important than their chemical composition at two 32 
continental locations as larger particles are more readily activated than smaller particles because they require 33 
a lower critical supersaturation (Dusek et al., 2006; Ervens et al., 2007). However, the chemical composition 34 
may be important in other locations such as the marine environment, where primary organic particles 35 
(hydrogels) have been shown to be exceptionally good CCN (Ovadnevaite et al., 2011). 36 
 37 
The bulk hygroscopicity parameter κ (Petters and Kreidenweis, 2007), has been introduced to provide a 38 

concise way to describe how effectively an aerosol particle functions as a CCN. It can be measured 39 
experimentally and is increasingly being used as a way to characterize aerosol properties. Pringle et al. 40 
(2010) used surface and aircraft measurements to evaluate the values of the hygroscopicity parameter 41 
simulated by a global aerosol model, and found generally good agreement. When the aerosol is dominated by 42 
organics, discrepancies between values of κ obtained directly from both CCN activity measurements and 43 
sub-saturated particle water uptake measurements have been observed in some instances (e.g., Irwin et al., 44 
2010; Prenni et al., 2007; Roberts et al., 2010), whereas in other studies closure has been obtained (e.g., 45 
Duplissy et al., 2008; Rose et al., 2011). Adsorption theory (Kumar et al., 2011) replaces κ-theory for CCN 46 
activation for insoluble particles (e.g., dust) while alternative theories are still required for explanation of 47 
primary marine organics that seem to have peculiar gel-like properties (Ovadnevaite et al., 2011). 48 
 49 
7.3.3.4 IN Properties of Aerosols 50 
 51 
Aerosols that act as IN are solid substances at atmospheric temperatures and supersaturations. Mineral dust 52 
and primary bioaerosols such as bacteria, fungal spores and pollen, are typically known as good IN. 53 
Conflicting evidence has been presented for the ability of BC, organic and biomass burning particles to act as 54 
IN. Four heterogeneous ice nucleation modes are distinguished in the literature. Immersion freezing refers to 55 
freezing that is initiated from within a cloud droplet, condensation freezing refers to freezing during droplet 56 
formation, and contact freezing is initiated when an IN collides with a supercooled cloud droplet. Deposition 57 
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nucleation refers to the direct deposition of vapour onto IN. Lidar observations revealed that liquid cloud 1 
droplets are present before ice crystals form via heterogeneous freezing mechanisms (Ansmann et al., 2008; 2 
de Boer et al., 2011) indicating that deposition nucleation does not seem to be important for mixed-phase 3 
clouds. 4 
 5 
Laboratory measurements of the ice activity of various aerosols is summarized in terms of their ice onset 6 
temperatures versus relative humidities, for both deposition/condensation nucleation and immersion freezing, 7 
in Figure 7.15. The reported nucleation onset points refer to different fractions of ice nucleating particles due 8 
to different detection thresholds of measurement methods. Bioaerosols initiate immersion freezing at the 9 
highest temperatures and are considered as very efficient IN, but their concentration in the upper troposphere 10 
is relatively low (Hoose et al., 2010a). Remote sensing observations confirm that ice clouds in air containing 11 
dust can be found at significantly warmer temperatures than in dust-free conditions (Choi et al., 2010; Sassen 12 
et al., 2003; Seifert et al., 2010). Laboratory results indicate that, in comparison with natural IN such as 13 
mineral dust and biological particles, soot initiates ice only at the coldest temperatures (Hoose and Möhler, 14 
2012). As in-situ observations indicate an enrichment of BC in atmospheric ice particle residuals in 15 
tropospheric mixed phase clouds (Cozic et al., 2008; Targino et al., 2009; Twohy et al., 2010), there must be 16 
some mechanism for BC to enter ice clouds, but that does not necessarily mean that BC acted as IN. Since 17 
BC has anthropogenic sources its increase since pre-industrial times may have caused changes to the lifetime 18 
of mixed-phase clouds, as discussed in Section 7.4, and thus to AFaci as summarized in Section 7.5. 19 
 20 
IN can either be bare or mixed with other substances. As bare particles age in the atmosphere, they acquire 21 
liquid surface coatings by condensing soluble species and water vapour or by scavenging soluble particles, 22 
which may transform IN from deposition or contact nuclei into possible immersion nuclei. A change from 23 
contact to immersion freezing implies an activation at colder temperatures with consequences for the lifetime 24 
of mixed-phase clouds and AFaci (Section 7.5).  25 
 26 
[INSERT FIGURE 7.15 HERE] 27 
Figure 7.15: The onset temperatures and relative humidities for deposition/condensation freezing and immersion 28 
freezing for bioaerosols (Ahern et al., 2007; Diehl et al., 2001; Iannone et al., 2011; Kanji et al., 2011; Mohler et al., 29 
2008; Mortazavi et al., 2008; von Blohn et al., 2005; Yankofsky et al., 1981), mineral dusts (Archuleta et al., 2005; 30 
Bundke et al., 2008; Connolly et al., 2009; Cziczo et al., 2009a; Field et al., 2006; Kanji and Abbatt, 2006; Kanji et al., 31 
2011; Knopf and Koop, 2006; Koehler et al., 2010; Kulkarni and Dobbie, 2010; Lüönd et al., 2010; Mohler et al., 2006; 32 
Murray et al., 2011; Niedermeier et al., 2010; Niemand et al., 2012; Roberts and Hallett, 1968; Salam et al., 2006; 33 
Schaller and Fukuta, 1979; Welti et al., 2009; Zimmermann et al., 2008), organics (Baustian et al., 2010; Kanji et al., 34 
2008; Petters et al., 2009; Prenni et al., 2007; Shilling et al., 2006; Wagner et al., 2010; 2011; Wang and Knopf, 2011; 35 
Zobrist et al., 2007), solid ammonium sulphate (Abbatt et al., 2006; Baustian et al., 2010; Mangold et al., 2005; 36 
Shilling et al., 2006; Wise et al., 2009; 2010) and BC (soot) (Crawford et al., 2011; DeMott, 1990; DeMott et al., 1999; 37 
Diehl and Mitra, 1998; Dymarska et al., 2006; Fornea et al., 2009; Gorbunov et al., 2001; Kanji et al., 2011; Mohler et 38 
al., 2005), from a compilation of experimental data of sub- and super-micron aerosol particles in the literature (for 39 
references see supplementary material). The large range of observed ice nucleation onset conditions is due to different 40 
experimental setups, particle sizes, activated fractions and chemical composition. Only those IN species for which at 41 
least three papers exists are shown. The solid line refers to saturation with respect to liquid water and the dashed line 42 
refers to the homogeneous freezing of solution droplets after Koop et al. (2000). Adapted from Hoose and Möhler 43 
(2012). 44 
 45 
7.3.4 Aerosol-Radiation Interactions (ARI) 46 
 47 
7.3.4.1 Aerosol-Radiation Interactions 48 
 49 
Direct radiative effect (DRE) is the change in radiative flux caused by the combined direct effect of 50 
anthropogenic and natural aerosols. The DRE results from well-understood physics and is close to being an 51 
observable quantity, yet our knowledge of aerosol and environmental characteristics needed to quantify the 52 
DRE at the global scale remains incomplete (Anderson et al., 2005; Jaeglé et al., 2011; Satheesh and 53 
Moorthy, 2005). The DRE requires knowledge of the spectrally-varying aerosol extinction coefficient, single 54 
scattering albedo and phase function, which can in principle be estimated from the aerosol size distribution, 55 
shape, chemical composition, hygroscopicity, and mixing state (Figure 7.11). Radiative properties of the 56 
surface, atmospheric molecules and clouds also influence the DRE. In the solar spectrum and cloud-free 57 
conditions, the DRE is typically negative at the top-of-atmosphere but gets weaker, and can become positive 58 
with increasing aerosol absorption, decreasing upscatter fraction, or increasing albedo of the underlying 59 
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surface. DRE is weaker in cloudy conditions, except where the cloud layer is thin or where aerosols are 1 
located above or between clouds (e.g., Chand et al., 2009). The DRE at the surface is negative and can be 2 
much stronger than the DRE at the top-of-atmosphere over regions where aerosols are absorbing (Li et al., 3 
2010). In the longwave spectrum, top-of-atmosphere DRE is generally positive and mainly exerted by 4 
coarse-mode aerosols such as desert dust (Reddy et al., 2005), and stratospheric aerosols (Jacobson, 2001). 5 
 6 
There have been many measurement-based estimates of the DRE (Bauer et al., 2011; Bergamo et al., 2008; 7 
Di Biagio et al., 2010; Yu et al., 2006) although some studies involve some degree of modelling. Observed 8 
and calculated shortwave radiative fluxes agree within measurement uncertainty when aerosol properties are 9 
known (e.g., Osborne et al., 2011). Global observational estimates of the DRE rely on satellite remote 10 
sensing of aerosol properties and/or measurements of the Earth’s radiative budget (Chen et al., 2011; Kahn, 11 
2012). Estimates of shortwave cloud-free top-of-atmosphere DRE over the ocean range from –4 to –6 W m–2 12 
on a global, annual average, mainly contributed by sea spray (Bellouin et al., 2005; Loeb and Manalo-Smith, 13 
2005; Myhre et al., 2007; Yu et al., 2006). However, DRE can reach tens of W m-2 locally. Estimates over 14 
land are more difficult as the surface is less well characterised (Chen et al., 2009; Jethva et al., 2009) despite 15 
recent progress in aerosol inversion algorithms (e.g., Dubovik et al., 2011). Attempts to estimate the DRE in 16 
cloudy-sky remain elusive (e.g., Peters et al., 2011a) although passive and active remote sensing of aerosols 17 
over clouds is now possible (de Graaf et al., 2012; Omar et al., 2009; Torres et al., 2007; Waquet et al., 18 
2009). Notable areas of positive top-of-atmosphere DRE exerted by absorbing aerosols include the Arctic 19 
over ice surfaces (Stone et al., 2008) and seasonally off the shore of Namibia over stratocumulus clouds. 20 
While AOD and aerosol size are relatively well constrained, uncertainties in the aerosol single-scattering 21 
albedo (Loeb and Su, 2010) and vertical profile (e.g., Zarzycki and Bond, 2010) contribute significantly to 22 
the overall uncertainties in DRE. 23 
 24 
7.3.4.2 Rapid Adjustments to ARI  25 
 26 
Aerosol-radiation interactions give rise to rapid adjustments, which are particularly pronounced for 27 
absorbing aerosols, where the associated cloud changes are often referred to as the semi-direct effect (see 28 
Figure 7.2). The adjusted forcing (AF) from aerosol-radiation interactions is quantified in Section 7.5; only 29 
the corresponding processes governing rapid adjustments are discussed here. Impacts on precipitation are 30 
discussed in Section 7.6. 31 
 32 
Since AR4, additional studies have found correlations between cloud cover and absorbing aerosols (e.g., 33 
Brioude et al., 2009; Wilcox, 2010), and eddy-resolving, regional and global scale modelling studies have 34 
helped confirm a causal link. Relationships between cloud and aerosol reveal a more complicated picture 35 
than initially anticipated (e.g., Ghan et al., 2012; Hill and Dobbie, 2008; Koch and Del Genio, 2010; Sakaeda 36 
et al., 2011; Zhuang et al., 2010). 37 
 38 
Absorbing aerosols modify atmospheric stability. The effect of this on cloud cover depends on the height of 39 
the aerosol relative to the cloud and the type of cloud (Allen and Sherwood, 2010; Koch and Del Genio, 40 
2010; Yoshimori and Broccoli, 2008). Aerosol also reduces the downwelling solar radiation at the surface. 41 
Together the changes in atmospheric stability and reduction in surface fluxes provide a means for aerosols to 42 
significantly modify the fraction of surface-forced clouds (Feingold et al., 2005; Sakaeda et al., 2011). These 43 
changes may also affect precipitation as discussed in Section 7.6.2. 44 
 45 
Cloud cover is expected to decrease if absorbing aerosol is embedded in the cloud layer. This has been 46 
observed (Koren et al., 2004) and simulated (e.g., Feingold et al., 2005) for clouds over the Amazon forest in 47 
the presence of smoke aerosols. In the stratocumulus regime, absorbing aerosol above cloud-top strengthens 48 
the temperature inversion, reduces entrainment and tends to enhance cloudiness. Satellite observations 49 
(Wilcox, 2010) and modelling (Johnson et al., 2004) of marine stratocumulus show a thickening of the cloud 50 
layer beneath layers of absorbing smoke aerosol, which induces a local negative forcing. The responses of 51 
other cloud types, such as those associated with deep convection, are not well determined. 52 
 53 
Absorbing aerosols embedded in cloud drops enhances their absorption, which can affect the dissipation of 54 
cloud. The contribution to RFari is small (Ghan et al., 2012; Stier et al., 2007), and there is contradictory 55 
evidence regarding the magnitude of the cloud dissipation effect influencing AFari (Bond et al., 2012; 56 
Feingold et al., 2005; Ghan et al., 2012; Jacobson, 2012). 57 
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 1 
Global forcing estimates are necessarily based on global models (see Section 7.5.2), although the accuracy of 2 
GCMs in this regard is limited by their ability to represent low cloud controlling processes with fidelity. This 3 
is an area of concern as discussed in Section 7.2, and limits confidence in these estimates. 4 
 5 
7.3.5 Aerosol Responses to Climate Change and Feedback 6 
 7 
The climate drivers of changes in aerosols can be split into physical changes (temperature, humidity, 8 
precipitation, soil moisture, solar radiation, wind speed, sea ice extent, etc), chemical changes (availability of 9 
oxidants) and biological changes (vegetation cover and properties, plankton abundance and speciation, etc). 10 
The response of aerosols to climate change may constitute a feedback loop whereby climate processes 11 
amplify or dampen the initial perturbation (Carslaw et al., 2010; Raes et al., 2010). We assess here the 12 
relevance and strength of aerosol-climate feedbacks in the context of future climate change scenarios. 13 

 14 
7.3.5.1 Changes in Sea Spray and Mineral Dust 15 
 16 
Concentrations in sea spray will respond to changes in surface wind speed, precipitation and to the expected 17 
decrease in sea ice cover (Struthers et al., 2011). There is no agreement among climate models about the 18 
balance of effects, with estimates ranging from an overall 19% reduction in global sea salt burden from the 19 
present-day to year 2100 (Liao et al., 2006), to little sensitivity (Mahowald et al., 2006a), or a sizeable 20 
increase (Bellouin et al., 2011; Jones et al., 2007). In particular there is little understanding of how surface 21 
wind speed may change over the ocean in a warmer climate, and observed recent changes (e.g., Young et al., 22 
2011; Chapter 2) may not be indicative of future changes. Given that sea spray particles comprise a 23 
significant fraction of CCN concentrations over the oceans, such large changes will feed back on climate 24 
through changes in cloud droplet number (Korhonen et al., 2010a). 25 
 26 
Studies of the effects of climate change on dust loadings give a wide range of results. Woodward et al. 27 
(2005) found a factor of 3 increase in dust burden in 2100 relative to present-day because of a large increase 28 
in bare soil fraction. A few studies reported moderate (−10 to −20%) increases or decreases (e.g., Jacobson 29 
and Streets, 2009; Liao et al., 2009; Tegen et al., 2004). Mahowald et al. (2006b) found a 60% decrease 30 
under double CO2 concentration. The large range reflects different responses of the atmosphere and 31 
vegetation cover to climate change forcings and results in low confidence in these predictions. 32 

 33 
7.3.5.2 Changes in Sulfate, Ammonium and Nitrate Aerosols 34 
 35 
The DMS-sulfate-cloud-climate feedback loop could operate in numerous ways through changes in 36 
temperature, absorbed solar radiation, mixed layer depth and nutrient recycling, sea-ice extent, wind speed, 37 
shift in marine ecosystems due to ocean acidification and climate change, atmospheric processing of DMS 38 
into CCN, and no study has included all the relevant effects. However two decades of research have yielded 39 
important insights into this complex, coupled system (Ayers and Cainey, 2007; Carslaw et al., 2010). There 40 
is now medium agreement between observations and Earth System model simulations for a weak feedback 41 
due to a weak sensitivity of the CCN population to changes in DMS emissions (Carslaw et al., 2010; Quinn 42 
and Bates, 2011; Woodhouse et al., 2010). Parameterisations of oceanic DMS production lack robust 43 
mechanistic justification (Halloran et al., 2010) and as a result the sensitivity to ocean acidification and 44 
climate change remains uncertain (Bopp et al., 2004; Cameron-Smith et al., 2011; Kim et al., 2010). 45 
 46 
In the atmosphere chemical production of sulfate increases with temperature (Aw and Kleeman, 2003; 47 
Dawson et al., 2007; Kleeman, 2008), but most studies to date predict a small (0 to 9%) reduction in global 48 
sulfate burden, mainly because of future increases in precipitation (Liao et al., 2006; Pye et al., 2009; 49 
Racherla and Adams, 2006; Unger et al., 2006). However Rae et al. (2007) found a small increase in global 50 
sulfate burden from 2000–2100 because the simulated future precipitation was reduced in regions of high 51 
sulphate abundance. 52 
 53 
Changes in temperature have a large impact on nitrate aerosol formation through the Clausius-Clapeyron 54 
relation for HNO3. There is some agreement among global aerosol models that climate change alone will 55 
contribute to a decrease in the nitrate concentrations (Bellouin et al., 2011; Liao et al., 2006; Pye et al., 2009; 56 
Racherla and Adams, 2006) with the exception of Bauer et al. (2007) who found little change in nitrate for 57 
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year 2030. It should be noted however that changes in precursor emissions are likely to increase nitrate 1 
concentrations in the future (Bellouin et al., 2011). Besides the changes in meteorological parameters, 2 
climate change can also influence ammonium formation by changing concentrations of sulfate and nitrate, 3 
but the effect of climate change alone was found to be small (Pye et al., 2009). 4 

 5 
7.3.5.3 Changes in Carbonaceous Aerosols 6 
 7 
There is evidence that future climate change could lead to increases in the occurrence of wildfires because of 8 
changes in fuel availability, readiness of the fuel to burn and ignition sources (Kloster et al., 2010; Marlon et 9 
al., 2008; Mouillot et al., 2006; Pechony and Shindell, 2010). However vegetation dynamics may also play a 10 
role that is not well understood. Increased fire occurrence would increase aerosol emissions, but decrease 11 
BVOC emissions. This could lead to a small positive or negative net radiative effect and feedback (Carslaw 12 
et al., 2010). 13 
 14 
A large fraction of secondary organic carbon aerosol forms from the oxidation of isoprene, sesquiterpenes 15 
and monoterpenes from biogenic sources. Emissions from vegetation can increase in a warmer atmosphere, 16 
everything else being constant (Guenther et al., 2006). Global aerosol models simulate an increase in 17 
isoprene emissions of 22 to 55% by 2100 in response to temperature change (Heald et al., 2008; Liao et al., 18 
2006; Sanderson et al., 2003) and a change in global SOA burden of −6% to +11% through the climate-19 
induced changes in aerosol processes and removal rates (Heald et al., 2008; Liao et al., 2006; Tsigaridis and 20 
Kanakidou, 2007). Increasing CO2 concentrations are believed to inhibit BVOC emissions (Arneth et al., 21 
2007) which could offset the temperature effect and adds significant uncertainty to future emissions. Future 22 
changes in vegetation cover, whether they are natural or anthropogenic, also introduce large uncertainty in 23 
emissions (Lathière et al., 2010). There is little understanding on how the marine source of organic aerosol 24 
may change with climate, notwithstanding the large range of emission estimates for the present day (Carslaw 25 
et al., 2010). 26 
 27 
7.3.5.4 Synthesis 28 
 29 
The emissions, properties and concentrations of aerosols or aerosol precursors could respond significantly to 30 
climate change, but there is little consistency across studies in the magnitude or sign of this response. The 31 
lack of consistency arises mostly from our limited understanding of processes governing the source of 32 
natural aerosols and the complex interplay of aerosols with the hydrological cycle. The feedback parameter 33 
as a result of the future changes in emissions of natural aerosols is mostly bracketed within ±0.1 W m–2 K–1 34 
(Carslaw et al., 2010). With respect to anthropogenic aerosols, Liao et al. (2009) showed a significant 35 
positive feedback (feedback parameter of +0.04 to +0.15 W m–2 K–1 on a global mean basis) while Bellouin 36 
et al. (2011) simulated a smaller feedback of −0.02 to −0.08 W m–2 K–1. Overall we assess that models 37 
simulate relatively small feedback parameters (i.e., within ±0.2 W m–2 K–1) with very low confidence, 38 
however regional effects on the aerosol may be important. 39 
 40 
7.4 Aerosol-Cloud Interactions 41 
 42 
7.4.1 Introduction 43 
 44 
This section assesses our understanding of aerosol-cloud-precipitation interactions, emphasizing the ways in 45 
which anthropogenic aerosols may be affecting the distribution and radiative properties of clouds and 46 
precipitation. The idea that anthropogenic aerosols are changing cloudiness, thus contributing a substantial 47 
forcing to the climate system, has been addressed to varying degrees in all of the previous IPCC assessment 48 
reports. 49 
 50 
Since AR4, research has continued to articulate new pathways through which the aerosol may affect the 51 
radiative properties of clouds, as well as the intensity and spatial patterns of precipitation (e.g., Rosenfeld et 52 
al., 2008). Progress can be identified on four fronts: (i) global-scale modelling has advanced in its ability to 53 
represent a greater diversity of aerosol-cloud interactions, and with greater internal consistency; (ii) 54 
observational studies continue to document strong local correlations between CCN proxies and clouds or 55 
precipitation, but have become more quantitative and are increasingly identifying the methodological 56 
challenges associated with such correlations; (iii) regional-scale modelling is increasingly being used to 57 
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assess regional influences of aerosol on cloud field properties and precipitation; (iv) fine-scale modelling 1 
studies have begun to be used more widely, and among other things have shown how turbulent mixing, cloud 2 
and regional-scale circulations may buffer the effects of aerosol perturbations. 3 
 4 
This section focuses on the microphysics of aerosol-cloud interactions in liquid and mixed-phase clouds. 5 
Their radiative implications are quantified in Section 7.5. This section also includes discussion of aerosol 6 
influences on light precipitation in shallow clouds but defers discussion of aerosol effects on precipitation 7 
from mixed-phase clouds to Section 7.6. 8 
 9 
7.4.1.1 Overview and Classification of Hypothesized Aerosol-Cloud Interactions 10 
 11 
Denman et al. (2007) catalogued several possible pathways via which the aerosol might affect clouds. Given 12 
the number of possible aerosol-cloud interactions, and the difficulty of isolating them individually, we see 13 
little value in attempting to assess each effect in isolation, especially since modelling studies suggest that the 14 
effects may interact and compensate (Morrison and Grabowski, 2011; Stevens and Feingold, 2009). Instead, 15 
we group all radiative consequences of aerosol-cloud interactions into two broad categories: the immediate 16 
impact in the absence of macrophysical changes to clouds, denoted “radiative forcing due to aerosol-cloud 17 
interactions” or RFaci, and the final result including follow-on impacts of macrophysical responses to the 18 
initial change, denoted “adjusted forcing due to aerosol-cloud interactions”, or AFaci (Figure 7.2). RFaci 19 
represents the classical “Twomey (1977)” or cloud albedo effect whereby greater CCN numbers increase the 20 
droplet surface area, but is extended to include changes in the breadth of the size distribution (Section 7.4.2). 21 
AFaci additionally accounts for any secondary effects that result as clouds adjust to the rapid changes in their 22 
environment accompanying an aerosol perturbation (Figure 7.1), such as lifetime effects, wherein cloud 23 
macrostructure adjusts to changes in cloud microstructure (Albrecht, 1989; Liou and Ou, 1989; Pincus and 24 
Baker, 1994). AFaci does not, however, include adjustments associated with aerosol-radiation interactions. 25 
Although AFaci subsumes RFaci, we retain an estimate of RFaci in Section 7.5 for continuity with prior 26 
assessments, and because it is better understood than the model-dependent effects determining AFaci. 27 
Possible contributions to the AFaci from liquid clouds are discussed in Section 7.4.3, separately from those 28 
associated with adjustments by ice or mixed phase clouds (Section 7.4.4). Figure 7.16 shows a schematic of 29 
many of the processes to be discussed in Sections 7.4, 7.5, and 7.6. 30 
 31 
[INSERT FIGURE 7.16 HERE] 32 
Figure 7.16: Schematic depicting the myriad aerosol-cloud-precipitation related processes occurring within a typical 33 
GCM grid box. The schematic conveys the importance of considering aerosol-cloud-precipitation processes as part of 34 
an interactive system encompassing a large range of spatiotemporal scales. Cloud types include low-level stratocumulus 35 
and cumulus where research focuses on droplet activation, mixing, cloud scavenging, and new particle formation; ice-36 
phase cirrus clouds where a key issue is homogeneous freezing; and deep convective clouds where some of the key 37 
questions relate to aerosol influences on liquid, ice, and liquid-ice pathways for precipitation formation, cold pool 38 
formation, and scavenging. These processes influence the short- and longwave forcing of the system and hence climate. 39 
 40 
7.4.1.2 Advances and Challenges in Observing Aerosol-Cloud Interactions 41 
 42 
Since AR4, progress has been made in understanding how measurement artefacts affect retrievals of both 43 
aerosol (Jeong and Li, 2010; Kahn et al., 2005; Tanré et al., 1996; Tanré et al., 1997) and cloud properties 44 
(Platnick et al., 2003) in broken cloud fields. Two key issues are that measurements classified as “cloud-45 
free” may not be, and that aerosol measured in the vicinity of clouds is significantly different than it would 46 
be were the cloud field, and its proximate cause (high humidity), not present (e.g., Loeb and Schuster, 2008). 47 
The latter results from humidification effects on aerosol optical properties (Charlson et al., 2007; Su et al., 48 
2008; Tackett and Di Girolamo, 2009; Twohy et al., 2009), contamination by undetectable cloud fragments 49 
(Koren et al., 2007) and the remote effects of radiation scattered by cloud edges on aerosol retrieval (Várnai 50 
and Marshak, 2009; Wen et al., 2007). 51 
 52 
While passive satellite retrievals are unable to distinguish aerosol layers above or below clouds from those 53 
intermingling with the cloud field, newer active space-based remote sensing has begun to address this 54 
problem (Anderson et al., 2005; Huffman et al., 2007; Stephens et al., 2002). Spectral polarization and multi-55 
angular measurements can discriminate between cloud droplets and aerosol particles and thus improve 56 
estimates of aerosol loading and absorption (Deuzé et al., 2001; Mishchenko et al., 2007). Field studies 57 
(Rauber et al., 2007; Vogelmann et al., 2012; Wood et al., 2011b) and laboratory investigations (e.g., 58 
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Stratmann et al., 2009) of aerosol-cloud interactions also continue to make important contributions to our 1 
understanding of how aerosols impact cloud processes, and how clouds in turn modify aerosols. The latter 2 
occurs along a number of pathways including aqueous chemistry, which adds non-volatile mass to drops 3 
(e.g., Schwartz and Freiberg, 1981), coalescence scavenging, whereby drop collision-coalescence diminishes 4 
the drop (and aerosol) number concentration (Hudson, 1993), new particle formation in the vicinity of clouds 5 
(Clarke et al., 1999) and aerosol removal by rain (see also Section 7.3). As a result, our understanding of the 6 
distribution and properties of the aerosol in the vicinity of clouds continues to improve apace with an 7 
appreciation of the limits of this understanding (Anderson et al., 2009). 8 
 9 
The observational challenge of inferring causality from correlation remains a large and limiting one. Because 10 
the aerosol is a strong function of air-mass history and origin, and is strongly influenced by cloud and 11 
precipitation processes (Anderson et al., 2009; Clarke et al., 1999; Petters et al., 2006), and both are affected 12 
by meteorology (Engström and Ekman, 2010), correlations between the aerosol and cloud, or precipitation, 13 
cannot be taken as generally indicating a cloud response to the aerosol (e.g., Painemal and Zuidema, 2010). 14 
Furthermore, attempts to control for other important factors (air-mass history or cloud dynamical processes) 15 
are limited by a lack of understanding of cloud controlling factors in the first place (Anderson et al., 2009; 16 
Siebesma et al., 2009; Stevens and Brenguier, 2009). These problems greatly undermine confidence in 17 
observationally-based inferences of aerosol effects on clouds and precipitation. 18 

 19 
7.4.1.3 Advances and Challenges in Modelling Aerosol-Cloud Interactions 20 
 21 
Fine-scale models, capable of resolving cloud-scale circulations have greatly advanced as a tool for testing 22 
the physical mechanisms proposed to govern aerosol-cloud-precipitation interactions (Ackerman et al., 2009; 23 
vanZanten et al., 2011). A general finding from explicit numerical simulations of clouds is that various 24 
aerosol impact mechanisms tend to be mediated (and often buffered) by interactions across scales not 25 
included in the idealized models that gave rise to the original idea (Stevens and Feingold, 2009). Specific 26 
examples involve the interplay between the drop-size distribution and mixing processes that determine cloud 27 
macrostructure (Ackerman et al., 2004; Bretherton et al., 2007; Small et al., 2009; Stevens et al., 1998; 28 
Wood, 2007), or the dependence of precipitation development in stratiform clouds on details of the vertical 29 
structure of the cloud (Wood, 2007). As a result it is likely that the physical system is less sensitive to 30 
aerosol perturbations than are large-scale models, which do not represent all of these compensating 31 
processes. 32 
 33 
At larger scales, regional models allow for a much broader range of scale interactions and timescales long 34 
enough for robust features to emerge (Bangert et al., 2011; Seifert et al., 2012). Regional models allow 35 
exploration of aerosol-cloud interactions in the context of non-idealized meteorology, variability in land 36 
surface, and diurnal/monthly cycles (Tao et al., 2012). These advantages must be weighed against their 37 
inability to resolve the fine-scale cloud processes discussed above. Regional models have brought to light the 38 
possibility of aerosol gradients manifesting changes in circulation patterns via numerous mechanisms 39 
including gradients in heating rates (Lau et al., 2006; Section 7.3.4.2), changes in the radiative properties of 40 
cloud anvils (van den Heever et al., 2011; see Section 7.6), or changes in the spatial distribution of 41 
precipitation (Lee, 2012; Section 7.6). 42 
 43 
The representation of aerosol effects in global models has also advanced. Most global models now represent 44 
an increasing number of hypothesized aerosol-cloud interactions, and are undergoing evaluation through 45 
comparisons to data and to other models (Quaas et al., 2009). Historically, aerosol-cloud interactions in 46 
climate models have largely been introduced based on simple constructs (e.g., Albrecht, 1989; Pincus and 47 
Baker, 1994; Twomey, 1977). There has been significant progress on droplet activation (e.g., Ghan et al., 48 
2011) and ice nucleation (Barahona and Nenes, 2008; DeMott et al., 2010) parameterizations, however these 49 
still depend heavily on unresolved (climate model) physics such as updraught velocity. Similarly, 50 
parameterizations of aerosol influences on cloud amount cannot account for known non-monotonic 51 
responses (Section 7.4.3.2). Global models are now beginning to represent effects in convective, ice and 52 
mixed-phase clouds (e.g., Lohmann, 2008; Section 7.6; Song and Zhang, 2011). In addition 53 
“superparameterisation” approaches (Section 7.2.2.1.2) hold promise for treating aerosol-cloud interactions 54 
more comprehensively, with recent results supporting the notion that aerosol forcing is smaller than 55 
simulated by standard climate models (Wang et al., 2011b; see Section 7.5.3). Nevertheless, we caution that 56 
for both liquid-only and mixed-phase clouds, the inability of GCMs to resolve cloud-scale updraught 57 
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velocities and associated cooling rates is a pervasive concern for aerosol-cloud interactions, even for models 1 
with grid sizes on the order of kilometres. 2 
 3 
Although advances have been considerable, the challenges remain formidable. The representation of clouds 4 
in large-scale models remains primitive (Section 7.2.3) and even if large-scale models were able to represent 5 
clouds with greater fidelity, fine-scale modelling suggests that the outcome of an aerosol perturbation 6 
depends on the details of the interaction of clouds, turbulence, radiation and precipitation processes on a 7 
range of scales not represented by large-scale models (vanZanten et al., 2011). For this reason it is not 8 
surprising that large-scale models exhibit a range of manifestations of aerosol-cloud interactions, which 9 
limits quantitative inference (Quaas et al., 2009). This emphasises the need to incorporate into climate 10 
models the lessons learned from cloud-scale models, in a physically consistent way. 11 
  12 
7.4.1.4 Combined Modelling and Observational Approaches 13 
 14 
Combined approaches, which attempt to maximize the respective advantage of models and data, are 15 
beginning to add to understanding of aerosol-cloud interactions. These include inversions of the observed 16 
historical record using large-scale modelling studies, but also the use of reanalysis and chemical transport 17 
models to help interpret satellite records (Chameides et al., 2002; Koren et al., 2010; Mauger and Norris, 18 
2010), field study data to help constrain fine-scale modelling studies (Ackerman et al., 2009; vanZanten et 19 
al., 2011), or satellite/surface-based climatologies to constrain large-scale modelling (Quaas et al., 2009). 20 
 21 
7.4.2 Radiative Forcing due to Aerosol-Cloud Interactions (RFaci) 22 
 23 
7.4.2.1 The Physical Basis 24 
 25 
The cloud albedo effect (Twomey, 1977), or RFaci, is the mechanism by which an increase in aerosol 26 
number concentration leads to an increase in liquid cloud albedo (reflectance of incoming solar radiation) by 27 
increasing the cloud droplet number concentration and hence increasing total droplet surface area, with the 28 
liquid water content and cloud geometrical thickness held fixed. Although only the change in the droplet 29 
concentration is considered in the original concept of the cloud albedo effect, a change in the shape of the 30 
droplet size distribution that is directly induced by the aerosols, may also play a role (e.g., Feingold et al., 31 
1997; Liu and Daum, 2002). In the Arctic, anthropogenic aerosols may influence the longwave emissivity of 32 
thin liquid clouds and generate a positive forcing at the surface (Garrett and Zhao, 2006; Lubin and 33 
Vogelmann, 2006). This line of research is at a stage of relative infancy and is not covered further in this 34 
assessment. 35 
 36 
The physical basis of RFaci is fairly well understood, with research since AR4 generally reinforcing earlier 37 
work. Detailed in-situ aircraft observations show that droplet concentrations observed just above the cloud 38 
base generally agree with those predicted given the aerosol and updraught observed below the cloud (e.g., 39 
Fountoukis et al., 2007). Vertical profiles of cloud effective radius also agree with those predicted by models 40 
that take into account the effect of entrainment (Lu et al., 2008), although uncertainties still remain in 41 
estimating the shape of the droplet size distribution (Brenguier et al., 2011), and the degree of non-42 
adiabaticity within clouds. Multi-dimensional radiative transfer calculations have also been applied to 43 
estimate cloud albedo instead of using the traditional two-stream approximation to find that the latter could 44 
overestimate the albedo effect under certain conditions (Duda et al., 1996; Zuidema et al., 2008). 45 
 46 
7.4.2.2 Observational Evidence for Aerosol-Cloud Interactions 47 
 48 
At low AOD (i.e., less than about 0.3) there is ample observational evidence for increases in aerosol 49 
resulting in an increase in drop concentration and decrease in drop size (for constant liquid water) but 50 
uncertainties remain regarding the magnitude of this effect, and its sensitivity to spatial averaging. Based on 51 
simple metrics, there is a large range of physically plausible responses, with aircraft measurements (e.g., 52 
Hegg et al., 2012; Lu et al., 2007; Lu et al., 2008; Twohy et al., 2005) tending to show stronger responses 53 
than satellite-derived responses (McComiskey and Feingold, 2008; Nakajima and Schulz, 2009). At high 54 
AOD, droplet concentration tends to saturate and, if the aerosol is absorbing, there may be reductions in 55 
droplet concentration and cloudiness (Koren et al., 2008). This effect is part of AFaci (Section 7.4.3.2). 56 
 57 
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Since clouds experience rapid adjustments to liquid water and depth when influenced by aerosol 1 
perturbations, RFaci is a hypothetical construct. Hence while an aerosol influence on cloud microphysics is 2 
observable, the radiative forcing associated with the “constant liquid water RFaci” is generally not (Section 3 
7.4.3.2). 4 
 5 
7.4.2.3 Advances in Process Level Understanding 6 
 7 
At the heart of the albedo effect lie two fundamental issues. The first is droplet activation and its sensitivity 8 
to aerosol and meteorological parameters. The primary controls on droplet concentration are the aerosol 9 
number concentration (particularly at diameters greater than about 60 nm) and cooling rate (proportional to 10 
updraught velocity). Aerosol size distribution can play an important role under high aerosol loadings, 11 
whereas aerosol composition tends to be much less important, except perhaps under very polluted conditions 12 
and low updraught velocities (e.g., Ervens et al., 2005). The relative unimportance of composition is partially 13 
because aging makes particles more hygroscopic, but also because of the self-regulation of the 14 
supersaturation field that determines drop activation (e.g., higher hygroscopicity, which initially favours 15 
activation, leads to higher water vapour uptake, which then lowers supersaturation and suppresses 16 
activation). The second issue is the presence of condensed water that strongly determines how much energy 17 
can be reflected; there is no RFaci unless clouds are present. Simple arguments show that in a relative sense 18 
the amount of reflected energy is approximately two-and-a-half times more sensitive to changes in the liquid 19 
water path than to changes in droplet concentration (Boers and Mitchell, 1994). Since both these parameters 20 
experience similar ranges of variability, the magnitude of aerosol-cloud related forcing rests mostly on 21 
dynamical factors such as turbulent strength and entrainment that control cloud amount, and a few key 22 
aerosol parameters such as aerosol number concentration and size distribution, and to a much lesser extent, 23 
composition. 24 
 25 
7.4.3 Forcing Associated with Adjustments in Liquid Clouds (AFaci) 26 
 27 
7.4.3.1 The Physical Basis for Adjustments in Liquid Clouds 28 
 29 
The adjustments giving rise to AFaci are multi-faceted and are often associated with changes in cloud 30 
lifetime or cloud water, previously referred to as ‘lifetime’ effects (Figure 7.2). However this old 31 
nomenclature is misleading because it assumes a relationship between cloud lifetime and cloud amount or 32 
water content. Moreover, the effect of the aerosol on cloud amount may have nothing to do with cloud 33 
lifetime per se (e.g., Pincus and Baker, 1994). 34 
 35 
The traditional view has been that adjustment effects associated with aerosol-cloud-precipitation interactions 36 
will add to the initial albedo increase by increasing cloud amount. The chain of reasoning involves three 37 
steps: first that droplet concentrations depend on the number of available CCN; second that precipitation 38 
development is regulated by the droplet concentration; and third that the development of precipitation 39 
reduces cloud amount (Stevens and Feingold, 2009). 40 
 41 
Of the three steps the first has ample support in both observations and theory (Section 7.4.2). More 42 
problematic are the second two links in the chain of reasoning. The physical basis for a pervasive, positive 43 
dependence of cloud amount on the available CCN is weak. Although increased droplet concentrations 44 
inhibit the initial development of precipitation in single clouds and stratocumulus (see Section 7.4.3.2.1), it is 45 
not clear that such an effect operates in an evolving, broken cloud field. In the trade-cumulus regime, some 46 
modelling studies suggest the opposite, with increased aerosol concentrations actually promoting the 47 
development of deeper clouds and invigorating precipitation (Stevens and Seifert, 2008; see discussion of 48 
similar responses in deep convective clouds in Section 7.6). Others have shown alternating cycles of larger 49 
and smaller cloud water in both aerosol-perturbed stratocumulus (Sandu et al., 2008) and trade cumulus (Lee 50 
et al., 2012), pointing to the important role of environmental feedback. Although the original studies that 51 
hypothesized cloud amount effects (Albrecht, 1989; Liou and Ou, 1989) are often taken as demonstrative of 52 
this point, there is limited unambiguous observational evidence (exceptions to be given below). Many 53 
climate models assume such an effect a priori, which likely influences their forcing estimates. 54 
 55 
7.4.3.2 Observational Evidence of Adjustments in Liquid Clouds  56 
 57 
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Since AFaci subsumes RFaci, and because RFaci is hard to observe, we now discuss observations of aerosol-1 
perturbed cloud fields more generally. 2 
 3 
7.4.3.2.1 Stratocumulus 4 
The cloud albedo effect is best manifested in so-called ship tracks, which are bright lines of clouds behind 5 
ships. As shown during the Monterey Area Ship Track (MAST) experiment, many ship tracks are 6 
characterized by an increase in the droplet concentration resulting from the increase in aerosol number 7 
concentration and an absence of drizzle size drops, which leads to a decrease in the droplet radius and an 8 
increase in the cloud albedo (Durkee et al., 2000), all else equal. Coakley and Walsh (2002) showed that 9 
cloud water responses can be of different sign. This is supported by more recent shiptrack analyses based on 10 
the new A-Train satellites (Christensen and Stephens, 2011); liquid water decreases weakly (−6%) in 11 
overcast clouds in response to ship-track intrusions but increases significantly (39%) in precipitating, broken 12 
stratocumulus clouds where aerosol intrusions result in larger cloud fraction. Adjustments are therefore key 13 
to understanding radiative response. A-Train satellites studies of long-term degassing of low-lying volcanic 14 
aerosol on stratocumulus point to smaller drop sizes but ambiguous changes in cloud fraction and cloud 15 
water (Gasso, 2008). The global radiative forcing of visible ship tracks has been estimated from satellite and 16 
found to be insignificant at about –0.5 mW m-2 (Schreier et al., 2007), although there is some concern that 17 
this analysis may not have identified all shiptracks. Nevertheless, this result is supported by two years of data 18 
downwind of shipping lanes that were unable to distinguish aerosol influences from meteorological 19 
influences on cloud microphysical or macrophysical properties (Peters et al., 2011b). Counter evidence of 20 
shiptracks significantly increasing the cloud fraction and albedo of broken cloud scenes are also emerging 21 
(Goren and Rosenfeld, 2012). 22 
 23 
The development of precipitation in stratocumulus, whether due to aerosol or meteorological influence can, 24 
in some instances, change a highly reflective closed-cellular cloud field to a weakly reflective broken open-25 
cellular field (Comstock et al., 2005; Savic-Jovcic and Stevens, 2008; Sharon et al., 2006; Stevens et al., 26 
2005b; vanZanten et al., 2005; Wang and Feingold, 2009a). In some cases, compact regions (pockets) of 27 
open-cellular convection become surrounded by regions of closed-cellular convection. It is, however, 28 
noteworthy that observed precipitation rates can be similar in both open and closed-cell environments (Wood 29 
et al., 2011a). The lack of any apparent difference in the large-scale environment of the open cells, versus the 30 
surrounding closed cellular convection, suggests the potential for multiple equilibria (Baker and Charlson, 31 
1990; Feingold et al., 2010). Therefore in the stratocumulus regime, the onset of precipitation may lead to a 32 
chain of events that leads to a large-scale reduction of cloudiness in agreement with Liou and Ou (1989) and 33 
Albrecht (1989). The transition may be bidirectional: ship tracks passing through open-cell regions also 34 
appear to revert the cloud field to a closed-cell regime inducing a potentially strong AFaci (Christensen and 35 
Stephens, 2011; Goren and Rosenfeld, 2012; Wang et al., 2011a). 36 
 37 
7.4.3.2.2 Trade-cumulus 38 
Precipitation from shallow convective clouds proves difficult to observe in trade cumuli, as the clouds are 39 
small, and not easily observed by space-based remote sensing techniques (Stephens et al., 2008). A recent A-40 
Train satellite study of trade cumuli influenced by aerosol associated with slow volcanic degassing points to 41 
smaller droplet size, decreased precipitation efficiency, increased cloud amount, and higher cloud tops (Yuan 42 
et al., 2011). Other studies show that in the trade cumulus regime cloudiness tends to increase with 43 
precipitation amount, most likely because processes that favour precipitation development also favour clouds 44 
(Nuijens et al., 2009) and because precipitating trade cumuli tend to regenerate through colliding outflows 45 
(Zuidema et al., 2012). 46 
 47 
While observationally-based assessments of aerosol-cloud interactions have a long history, a more recent 48 
development is assessment of the ability of detailed models to reproduce the radiative fingerprints of aerosol-49 
cloud interactions in cumulus cloud fields (Schmidt et al., 2009). This involves comparison between 50 
measurements of the irradiance field with the same field calculated in a fine-scale model that represents 51 
aerosol-cloud interactions. Such an approach identifies key forcing parameters (e.g., cloud-field properties, 52 
aerosol hygroscopicity and absorption) and provides the link between aerosol-cloud interactions and AFaci. 53 
 54 
7.4.3.3 Advances in Process Level Understanding  55 
 56 



Second Order Draft Chapter 7 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 7-40 Total pages: 139 

Since AR4, there has been progress towards understanding some basic processes relevant to AFaci. One 1 
question is how susceptible precipitation is to droplet concentration, and by inference to the available 2 
aerosol. Some studies point to the drop effective radius as a threshold indicator of the onset of drizzle 3 
(Rosenfeld and Gutman, 1994; Wang et al., 2011a). Others focus on the sensitivity of the conversion of 4 
cloud-water to rain-water (autoconversion) and find that it scales with the square of the inverse of the droplet 5 
concentration(Khairoutdinov and Kogan, 2000). However theoretical work that incorporates a fuller 6 
description of rain formation processes suggests that this strongly over-estimates the sensitivity of rain 7 
formation in shallow clouds (Stevens and Seifert, 2008), and that rain formation scales with approximately 8 
the inverse square-root of the droplet concentration (Kostinski, 2008; Seifert and Stevens, 2010). 9 
Observational studies also suggest a weaker scaling law (approximately the inverse of drop concentration; 10 
Comstock et al., 2005; Pawlowska and Brenguier, 2003; vanZanten et al., 2005). Note that thicker, liquid 11 
clouds generate rain via accretion of cloud drops by raindrops, a process that is relatively insensitive to 12 
droplet concentration, and therefore to aerosol perturbations (e.g., Khairoutdinov and Kogan, 2000). 13 
 14 
The balance of evidence suggests that autoconversion likely scales with approximately the inverse square 15 
root of droplet concentration and that liquid water path has significantly more leverage over precipitation 16 
than does droplet concentration. Some of the effects that reduce and even eliminate the sensitivity of rain 17 
formation to the autoconversion process have begun to be incorporated in parameterizations used by large-18 
scale models (Posselt and Lohmann, 2009). 19 
 20 
Small-scale studies (Ackerman et al., 2004; Small et al., 2009; Xue et al., 2008) and A-Train satellite 21 
observations (Christensen and Stephens, 2011; Lebsock et al., 2008) tend to confirm two responses of the 22 
cloud liquid water to increasing aerosol. Under clean conditions when clouds are prone to precipitation, an 23 
increase in the aerosol tends to increase cloud amount. Under non-precipitating conditions, clouds tend to 24 
thin in response to increasing aerosol. Treatment of the subtlety of these responses and associated detail in 25 
small-scale cloud processes is not currently feasible in GCMs, nor will it be in the foreseeable future. 26 
 27 
Since AR4, cloud resolving model simulation has begun to stress the importance of scale interactions when 28 
addressing aerosol-cloud interactions. Large model domains (order 100 km) allow mesoscale circulations to 29 
develop in response to changes in the aerosol. These dynamical responses may have a significant impact on 30 
cloud morphology and radiative forcing. Examples include the dramatic changes in cloud morphology 31 
associated with changes in cellular structure discussed above and the cloud-free shadows that appear 32 
alongside ship tracks (Wang and Feingold, 2009b). Similar examples of large-scale changes in circulation 33 
associated with aerosol, and associated influence on precipitation are discussed in Section 7.6.4. These 34 
underscore the imprudence of applying simplistic rules for aerosol-cloud-precipitation interactions in GCMs. 35 
 36 
7.4.3.4 Advances in and Insights Gained from Large-Scale Modelling Studies  37 
 38 
Regional models are increasingly including representation of aerosol-cloud interactions using sophisticated 39 
microphysical models (Bangert et al., 2011; Seifert et al., 2012; Yang et al., 2011) and offer an important 40 
middle ground between fine-scale, idealized simulations and GCMs. Some of these models are operational 41 
weather forecast models that undergo regular evaluation. Yang et al. (2011) show improved simulations of 42 
stratocumulus fields when aerosol-cloud interactions are introduced. Regional models are increasingly being 43 
used in conjunction with satellite observations to provide the meteorological context for aerosol-cloud 44 
interactions (see Section 7.4.1.4) with some (e.g., Painemal and Zuidema, 2010) suggesting that droplet 45 
concentration differences, are primarily driven by synoptic scale influences rather than aerosol. 46 
 47 
It appears increasingly likely that cloud adjustments, which almost certainly exist locally, vary from one 48 
cloud regime to the next. As such it requires models to correctly represent the distribution of cloud regimes 49 
evincing such effects, and knowledge of how such effects manifest themselves across these regimes. Because 50 
diverse effects offer the possibility of compensating one another, at least globally, it seems possible that 51 
AFaci may be less important than previously thought (Stevens and Feingold, 2009). 52 

 53 
7.4.4 Adjustments in Cold Clouds 54 
 55 
7.4.4.1 The Physical Basis for Adjustments in Cold Clouds 56 
 57 
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Mixed-phase clouds, containing both liquid water and ice particles, exist at temperatures between 0°C and –1 
38°C. At warmer temperatures ice melts rapidly, whereas at colder temperatures liquid water freezes 2 
homogeneously. The formation of ice in mixed-phase clouds depends on heterogeneous freezing, initiated by 3 
ice nuclei (IN; Section 7.3.3.4 and Figure 7.15), usually insoluble aerosol particles. In spite of their very low 4 
concentrations (on the order of 1 l–1), IN have an important influence on mixed-phase clouds. Mineral dust 5 
particles have been identified as good IN but far less is known about the IN ability of other aerosol types, 6 
and their preferred modes of nucleation. For example, the ice nucleating ability of black carbon particles 7 
remains controversial (Hoose and Möhler, 2012). In the case of cirrus (ice-only) clouds forming via 8 
homogeneous freezing at temperatures colder than –38°C, soluble matter can hinder glaciation by depressing 9 
the freezing temperature of super-cooled drops (e.g., Baker and Peter, 2008; Girard et al., 2004). Hence 10 
anthropogenic perturbations to the aerosol have the potential to affect glaciation, water and ice optical 11 
properties, and their radiative effect. 12 
 13 
Because the equilibrium vapour pressure with respect to ice is lower than that with respect to liquid, the 14 
initiation of ice in a supercooled liquid cloud will cause vapour to diffuse rapidly toward ice particles at the 15 
expense of the liquid water (Wegener-Bergeron-Findeisen process; e.g., Hudson et al., 2010; Verheggen et 16 
al., 2007). This favours the depositional growth of large ice crystals, which may sediment away from the 17 
water-saturated region of the atmosphere, influencing the subsequent evolution of the cloud. Hence 18 
anthropogenic perturbations to the IN can influence the rate at which ice forms, which in turn may regulate 19 
cloud amount (Lohmann, 2002a; Storelvmo et al., 2011; see also Section 7.2.3.2.2) and upper tropospheric 20 
humidity. 21 
 22 
Finally, the ice-phase provides enthalpy to the environment, which influences cloud dynamics, as well as 23 
alternate, complex pathways for precipitation to develop (e.g., Zubler et al., 2011and Section 7.6). 24 
 25 
7.4.4.2 Observations of Aerosol Effects on Arctic Ice and Mixed-Phase Stratiform Clouds 26 
 27 
Arctic mixed-phase clouds have received a great deal of attention since AR4, with major field programs 28 
conducted in 2004 (Verlinde et al., 2007) and 2009 (Brock et al., 2011; Jacob et al., 2010; McFarquhar et al., 29 
2011), in addition to long-term monitoring at Barrow, Alaska (Shupe et al., 2008) and analysis of earlier 30 
field experiments (Uttal et al., 2002). Mixed-phase Arctic clouds persist for extended periods of time (days 31 
and even weeks; Zuidema et al., 2005), in spite of the inherent instability of the ice-water mix. We focus 32 
here on the role of the aerosol and refer to Section 7.2.3.2.2 for a discussion of meteorological aspects. In 33 
spite of their low concentrations, IN have an important influence on cloud persistence, with clouds tending to 34 
glaciate and disappear rapidly when IN concentrations are relatively high and/or updraught velocities too 35 
small to sustain a liquid water layer (e.g., Ovchinnikov et al., 2011). The details of the heterogeneous ice-36 
nucleation mechanism remain controversial but there is increasing evidence that ice forms in Arctic stratus 37 
via the liquid phase (immersion freezing) so that the CCN population also plays an important role (de Boer et 38 
al., 2011; Lance et al., 2011). If ice indeed forms via the liquid phase this represents a self-regulating 39 
feedback that helps sustain the clouds: as ice forms, water is depleted, which restricts further ice formation 40 
and competition for water vapour via the Wegener-Bergeron-Findeisen process. 41 
 42 
7.4.4.3 Advances in Process Level Understanding 43 
 44 
Since AR4 research on ice-microphysical processes has been very active as evidenced by activity in the 45 
abovementioned field experiments. The persistence of some mixed-phase stratiform clouds has prompted 46 
efforts to explain this phenomenon in a theoretical framework (Korolev and Field, 2008). Cloud persistence 47 
may require a level of understanding of very detailed processes. For example, ice particle growth by vapour 48 
diffusion depends strongly on particle habit (Harrington et al., 2009), the details of which may have similar 49 
influence on glaciation times to the choice of different ice nucleation mechanism (Ervens et al., 2011). A 50 
recent review (Morrison et al., 2012) discusses the myriad processes that create a resilient mixed-phase cloud 51 
system, invoking the ideas of “buffering” seen in liquid clouds (Stevens and Feingold, 2009). Bistability has 52 
also been observed in the mixed-phase Arctic cloud system; the resilient cloud state is sometimes interrupted 53 
by a cloud-free state (Stramler et al., 2011), however there is much uncertainty regarding the meteorological 54 
and microphysical conditions determining which of these states is preferred. 55 
 56 
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Significant effort has been expended on heterogeneous freezing parameterizations employed in cloud or 1 
larger-scale models. Korolev (2007) developed a theoretically based parameterization of the Wegener-2 
Bergeron-Findeisen process that has lately been employed in different GCMs (Lohmann and Hoose, 2009; 3 
Storelvmo et al., 2008b). Other parameterizations remain empirical (e.g., DeMott et al., 2010; Gettelman et 4 
al., 2010; Hoose et al., 2008; Lohmann and Diehl, 2006; Phillips et al., 2008; Salzmann et al., 2010; 5 
Storelvmo et al., 2008a), although some recent work attempts to represent the processes explicitly (Jacobson, 6 
2003) or ground the development of parameterisations in concepts derived from classical nucleation theory 7 
(Hoose et al., 2010b). The details of how these processes are treated have important implications for tropical 8 
anvils (Fan et al., 2010). 9 
 10 
Ice nucleation in cirrus clouds (at temperatures less than –35°C) depends crucially on the cloud updraught 11 
velocity and hence the supersaturation with respect to ice. For homogeneous nucleation, the onset relative 12 
humidities have been parameterized using results of parcel model simulations (e.g., Barahona and Nenes, 13 
2009; Sassen and Dodd, 1988), airborne measurements in cirrus or wave clouds (Heymsfield et al., 1998; 14 
Heymsfield and Miloshevich, 1995), extensions of classical homogeneous ice nucleation theory 15 
(Khvorostyanov and Sassen, 1998; Khvorostyanov and Curry, 2009), and data from laboratory 16 
measurements (e.g., Bertram et al., 2000; Friedman et al., 2011; Koop et al., 2000; Magee et al., 2006; 17 
Mohler et al., 2003). If IN are present, then heterogeneous nucleation is the preferred freezing pathway 18 
because it occurs at lower onset relative humidities (or higher onset temperatures) than homogeneous 19 
nucleation. The onset relative humidities (or temperatures) for heterogeneous nucleation depend on the type 20 
and size of the involved ice nuclei (Figure 7.15 and Section 7.3.3.4). 21 
 22 
7.4.4.4 Advances in and Insights Gained from Large-Scale Modelling Studies 23 
 24 
Since the AR4 mixed-phase and ice clouds have received significant attention, with effort on representation 25 
of both heterogeneous (mixed-phase clouds) and homogeneous (cirrus) freezing processes. The physics of 26 
cirrus clouds usually only involve ice-phase microphysical processes and are somewhat simpler than mixed-27 
phase clouds. Nevertheless, representation of aerosol-cloud interactions in mixed-phase and ice clouds is 28 
considerably less advanced than that involving liquid-only clouds. 29 
 30 
For realistic concentrations of bacteria, biological particles have been found to play a negligible role for 31 
heterogeneous freezing in GCMs (Diehl and Wurzler, 2010; Hoose et al., 2010a; 2010b; Phillips et al., 2009; 32 
Sesartic et al., 2011). However some investigators (Ariya et al., 2009; Sun et al., 2010) argue that biological 33 
particles even in low concentrations may still be important because they can trigger secondary ice production 34 
via ice multiplication. Anthropogenic changes to the biosphere could conceivably also reduce the prevalence 35 
of biological IN. Our poor understanding of the climatology and lifecycle of aerosol particles that can serve 36 
as IN complicates attempts to assess what constitutes an anthropogenic perturbation to the IN population, let 37 
alone the effect of such a perturbation. BC can impact background cirrus by affecting ice nucleation 38 
properties but its effect remains uncertain (Kärcher et al., 2007). The numerous GCM studies that have 39 
evaluated AFaci for ice clouds are summarised in Section 7.5. 40 
 41 
7.4.5 Impact of Cosmic Rays on Aerosols and Clouds 42 
 43 
High solar acti0vity leads to variations in the strength and three-dimensional structure of the heliosphere, 44 
which reduces the flux of galactic cosmic rays (GCR) impinging upon the Earth’s atmosphere by increasing 45 
the deflection of low energy GCR. As GCR is the primary source of atmospheric ionization, it has been 46 
suggested that GCR may act to amplify relative small variations in solar activity into climatologically 47 
significant effects (Ney, 1959), via a hypothesised relationship between ionization and cloudiness (e.g., 48 
Dickinson, 1975; Kirkby, 2007). There have been many studies aiming to test this hypothesis since AR4, 49 
which fall in two categories: i) studies that seek to establish a causal relationship between cosmic rays and 50 
aerosols/clouds by looking at correlations between the two quantities on timescales of days to decades, and 51 
ii) studies that test through observations or modelling one of the physical mechanisms that have been put 52 
forward. We assess these two categories of studies in the next two sections. 53 
 54 
7.4.5.1 Correlations Between Cosmic Rays and Properties of Aerosols and Clouds 55 
 56 



Second Order Draft Chapter 7 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 7-43 Total pages: 139 

Many empirical relationships have been reported between GCR or cosmogenic isotope archives and some 1 
aspects of the climate system (e.g., Bond et al., 2001; Dengel et al., 2009; Ram and Stolz, 1999). The forcing 2 
from changes in total solar irradiance alone does not seem to account for these observations, implying the 3 
existence of an amplifying mechanism such as the hypothesized GCR-cloud link. We focus here on observed 4 
relationships between GCR and aerosol and cloud properties. Such relationships have focused on decadal 5 
variations in GCR induced by the 11-year solar cycle, shorter variations associated with the quasi-periodic 6 
oscillation in solar activity centred on 1.68 years or sudden and large variations known as Forbush decrease 7 
events. It should be noted that GCR co-vary with other solar parameters such as solar and UV irradiance, 8 
which makes any attribution of cloud changes to GCR problematic (Laken et al., 2011). 9 
 10 
Some studies have shown co-variation between GCR and low-level cloud cover using global satellite data 11 
over periods of typically 5–10 years (Marsh and Svensmark, 2000; Pallé Bagó and Butler, 2000). Such 12 
correlations have not proved to be robust when extending the time period under consideration (Agee et al., 13 
2012), restricting the analysis to particular cloud types (Kernthaler et al., 1999) or locations (Udelhofen and 14 
Cess, 2001; Usoskin and Kovaltsov, 2008). The purported correlations have also been attributed to ENSO 15 
variability (Farrar, 2000; Laken et al., 2012) and artefacts of the satellite data cannot be ruled out (Pallé, 16 
2005). Statistically significant, but weak, correlations between diffuse fraction and cosmic rays have been 17 
found at some locations in the UK over the 1951 to 2000 period (Harrison and Stephenson, 2006). Harrison 18 
(2008) also found a unique 1.68-year periodicity in surface radiation for two different UK sites between 19 
1978 and 1990, potentially indicative of a cosmic ray effect. Svensmark et al. (2009) found large global 20 
reductions in the aerosol Ångström exponent from AERONET, liquid water path from SSM/I, and cloud 21 
cover from MODIS and ISCCP after large Forbush decreases, but these results were not corroborated by 22 
other studies who found no statistically significant links between GCR and clouds at the global scale 23 
(Čalogović et al., 2010; Kristjánsson et al., 2008; Laken and Čalogović, 2011). Although some studies found 24 
small but significant positive correlations between GCR and high- and mid-altitude clouds (Laken et al., 25 
2010; Rohs et al., 2010), these variations were very weak, and the results were highly sensitive to how the 26 
Forbush events were selected and composited (Laken et al., 2009). 27 
 28 
7.4.5.2 Physical Mechanisms Linking Cosmic Rays to Cloudiness 29 
 30 
The most widely studied mechanism proposed to explain the possible link between GCR and cloudiness is 31 
the “ion-aerosol clear air” mechanism, in which atmospheric ions produced by GCR facilitate aerosol 32 
nucleation and growth ultimately impacting CCN concentrations and cloud properties (Carslaw et al., 2002; 33 
Usoskin and Kovaltsov, 2008). The variability of atmospheric ionization rates due to GCR changes can be 34 
considered relatively well quantified (Bazilevskaya et al., 2008), whereas resulting changes in aerosol 35 
nucleation rates are very poorly known (Enghoff and Svensmark, 2008; Kazil et al., 2008). The Cosmics 36 
Leaving OUtdoor Droplets (CLOUD) experiment at CERN indicates that GCR-induced ionization enhances 37 
water–sulphuric acid nucleation in the middle and upper troposphere, but is very unlikely to give a 38 
significant contribution to nucleation taking place in the continental boundary layer (Kirkby et al., 2011). 39 
Field measurements qualitatively support this view but cannot provide any firm conclusion on the role of 40 
ions due to the scarcity and other limitations of free-troposphere measurements (Arnold, 2006; Mirme et al., 41 
2010), and due to difficulties in separating GCR-induced nucleation from other nucleation pathways in 42 
continental boundary layers (Hirsikko et al., 2011). If strong enough, the signal from GCR-induced 43 
nucleation should be detectable at the Earth’s surface because a big fraction of CCN in the global boundary 44 
layer is expected to originate from nucleation taking place in the free troposphere (Merikanto et al., 2009). 45 
Based on surface aerosol measurements at one site, Kulmala et al. (2010) found no connection between GCR 46 
and new particle formation or any other aerosol property over a solar cycle (1996–2008). Our understanding 47 
of the “ion-aerosol clear air” mechanism as a whole relies on a few model investigations that simulate GCR 48 
changes over a solar cycle (Kazil et al., 2012; Pierce and Adams, 2009a; Snow-Kropla et al., 2011) or during 49 
strong Forbush decreases (Bondo et al., 2010; Snow-Kropla et al., 2011). Although all model studies found a 50 
detectable connection between GCR variations and either CCN changes or column aerosol properties, the 51 
response appears to be too weak to cause a significant radiative effect because GCR are unable to effectively 52 
raise CCN and droplet concentrations (Kazil et al., 2012). 53 
 54 
A second pathway linking GCR to cloudiness has been proposed through the global electric circuit (GEC). A 55 
small direct current is able to flow vertically between the ionosphere (maintained at approximately 250 kV 56 
by thunderstorms and electrified clouds) and the Earth’s surface over fair-weather regions because of GCR-57 
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induced atmospheric ionization. Charges can accumulate at the upper and lower cloud boundaries as a result 1 
of the effective scavenging of ions by cloud droplets (Tinsley, 2000). This creates conductivity gradients at 2 
the cloud edges (Nicoll and Harrison, 2010), and may influence droplet-droplet collision (Khain et al., 2004), 3 
cloud droplet-particle collisions (Tinsley, 2000), and cloud droplet formation processes (Harrison and 4 
Ambaum, 2008). These microphysical effects may potentially influence cloud properties both directly and 5 
indirectly. Although Harrison and Ambaum (2010) observed a small reduction in downward LW radiation 6 
which they associated with variations in surface current density, supporting observations are extremely 7 
limited. Our current understanding of the relationship between cloud properties and the GEC remains very 8 
low, and there is no evidence yet that associated cloud processes could be of climatic significance. 9 
 10 
7.4.5.3  Synthesis 11 
 12 
Although there is some evidence that ionization from cosmic rays may enhance aerosol nucleation in the free 13 
troposphere, there is medium evidence and high agreement that the cosmic ray-ionization mechanism is too 14 
weak to influence global concentrations of CCN or their change over the last century or during a solar cycle 15 
in any climatically significant way. The lack of trend in the cosmic ray intensity over the last 50 years (Agee 16 
et al., 2012; McCracken and Beer, 2007) provides another strong argument against the hypothesis of a major 17 
contribution of cosmic rays to ongoing climate change. 18 
 19 
7.5 Radiative Forcing and Adjusted Forcing by Anthropogenic Aerosols  20 
 21 
In this section, aerosol forcing estimates are synthesized and updated from AR4. As depicted in Figure 7.2, 22 
RF refers to the instantaneous radiative forcing either due to aerosol-radiation interactions (ari), formerly 23 
known as the direct aerosol forcing, or aerosol-cloud interactions (aci), formerly known as the indirect 24 
aerosol forcing. AF refers to the adjusted forcing (also referred to as radiative flux perturbation) and can be 25 
estimated from Hansen-style experiments with fixed sea-surface temperatures (see Sections 7.1 and 8.1). It 26 
includes rapid adjustments, such as changes to the cloud lifetime, changes in lapse-rate due to absorbing 27 
aerosols and aerosol microphysical effects on mixed-phase, ice and convective clouds. AF can again be 28 
caused by ari, aci or the sum of ari and aci. 29 
 30 
Chapter 2 of AR4 (Forster et al., 2007) assessed RFari to be –0.5 ± 0.4 W m–2 and broke this down into 31 
components associated with several species. Land albedo changes associated with black carbon (BC) on 32 
snow were assessed to be +0.1 ± 0.1 W m–2. The RFaci was assessed to be –0.70 W m–2 with a –1.8 to –0.3 33 
W m–2 uncertainty range. These uncertainty estimates were based on a combination of model results and 34 
remote observations. The semi-direct effect and other aerosol indirect effects were assessed in Chapter 7 35 
(Denman et al., 2007) to contribute additional uncertainty. The combined total aerosol forcing was given as 36 
two distinct ranges: –0.2 to –2.3 W m–2 from models and a –0.1 to –1.7 W m–2 range from inverse estimates. 37 
 38 
For consistency with Chapter 8, all quoted ranges represent a 5% to 95% uncertainty range and we evaluate 39 
the forcings between 1750 and ~2010. Note that for several aerosol species (such as biomass burning) this 40 
does not quite equate to the anthropogenic effect as emissions started to be influenced by humans before the 41 
Industrial Revolution. Many studies estimate aerosol forcings between 1850 and present day and conversion 42 
to a forcing between 1750 and present-day contributes to increase the uncertainty (Bellouin et al., 2008). 43 
 44 
7.5.1 Estimates of RF and AF from Aerosol-Radiation Interactions (RFari and AFari) 45 
 46 
7.5.1.1 Radiative Forcing and Adjusted Forcing from All Aerosols 47 
 48 
Building on our understanding of aerosol processes and their radiative effects (Section 7.3), this section 49 
assesses RFari and AFari. The subsection additionally assesses the forcings from absorbing aerosol (BC and 50 
dust) on both snow and ice. 51 
 52 
Observations can give useful constraints to aspects of the global RFari estimates (Section 7.3.4, Anderson et 53 
al., 2005; Kahn, 2012). Estimates of RFari are either taken from global aerosol models directly (Schulz et al., 54 
2006) or based mostly on observations, but using supplemental information from models (Loeb and Su, 55 
2010; Myhre, 2009). Three studies (Bellouin et al., 2008; Myhre, 2009; Zhao et al., 2008) improved satellite-56 
based RFari estimate over those quoted in AR4. The most complete analysis of the globally-averaged all-sky 57 
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preindustrial-to-present RF (Myhre, 2009) estimated an RFari of –0.3 ± 0.2 W m–2. There is medium 1 
confidence in this best estimate, but the uncertainty range is likely underestimated (Loeb and Su, 2010). 2 
 3 
Lohmann et al. (2010) found RFari in five GCMs ranging from –0.1 to –0.4 W m–2. A second phase of 4 
AeroCom model results gives an RFari median of –0.39 W m–2, with a model range of about –0.1 to –0.6 W 5 
m–2, after their forcings for 1850-2000 had been scaled by emissions to represent 1750–2010 changes 6 
(Myhre et al., 2012). Figure 7.17 shows the zonal mean total RFari for AeroCom phase II models and the 7 
1750–2010 RFari from all models are shown in Figure 7.19. Robust features are the maximum negative RF 8 
around 10°N–50°N, in the region with highest aerosol concentrations and a positive RF at high latitudes due 9 

to the higher surface albedo there. 10 
 11 
Remote sensing data, observations of fine-mode aerosol properties and a better knowledge of bulk aerosol 12 
optical properties make the estimate of total RFari more robust than the RF for individual species (see 13 
Forster et al., 2007). The best estimate of total RFari is taken to be –0.4 W m–2, based on combining the 14 
AeroCom median with the refined satellite-based estimates. The methodology of Loeb and Su (2010) is 15 
combined with an uncertainty analysis of aerosol optical properties to give an overall assessment for the 16 
RFari of –0.4 W m–2, with a 5-95% range of –0.7 to –0.1 W m–2. This is also consistent with the uncertainty 17 
analysis of Bellouin et al. (2012) and Ma et al. (2012b). Uncertainties in the radiative transfer also contribute 18 
to the overall uncertainty (Randles et al., 2012; Stier et al., 2012), while uncertainties in the vertical 19 
distribution are important for absorbing aerosols (Samset et al., 2012; Section 7.3.3). 20 
 21 
The assessed RFari of –0.4 ± 0.3 W m–2 has a smaller magnitude and smaller range than in AR4. There is 22 
also increased confidence in this assessment due to more robust satellite-based estimates and their better 23 
agreement with models. 24 
 25 
[INSERT FIGURE 7.17 HERE] 26 
Figure 7.17: Annual zonal mean RFari (in W m–2) due to all anthropogenic aerosols from the different AeroCom II 27 
models. No adjustment for missing species in certain models has been applied. The multi-model mean is shown with a 28 
black solid line. Adapted from Myhre et al. (2012). 29 
 30 
AFari adds the radiative effects from rapid adjustments onto RFari. Studies have evaluated the rapid 31 
adjustments separately as a semi-direct effect (see Section 7.3.5) and/or the AFari has been directly 32 
evaluated. Rapid adjustments are principally caused by cloud changes. There is high confidence that the 33 
local heating caused by absorbing aerosols can cause cloudiness to increase or decrease depending on their 34 
conditions. However, there is low confidence in determining the sign and magnitude of the rapid adjustments 35 
at the global scale as current models differ in their responses and are known to inadequately represent some 36 
of the important relevant cloud processes (see Section 7.3.5). Existing estimates of AFari nevertheless rely 37 
on such global models. Five GCMs were analysed for RFari and AFari in Lohmann et al. (2010). Their rapid 38 
adjustments ranged from –0.3 to +0.1 W m-2. In a further study, Takemura and Uchida (2011) found a rapid 39 
adjustment of +0.06 W m–2. The sensitivity analysis of Ghan et al. (2012) found a –0.1 W m–2 to +0.1 W m–2 40 
range over model variants, where an improved aging of the mixing state led to small negative rapid 41 
adjustment of around –0.1 W m–2. Bond et al. (2012) assessed scaled RF and efficacy estimates from seven 42 
earlier studies focusing on BC and found a range of rapid adjustments between –0.2 W m–2 and –0.01 W m–2. 43 
There is a potential additional rapid adjustment term from the effect of cloud drop inclusions (see Section 44 
7.3.4.2). Based on the Ghan et al. (2011) and Jacobson (2012), Bond et al. (2012) estimate an additional 45 
AFari of +0.2 W m–2, with an uncertainty range of –0.1 to +0.7 W m–2, however there is low evidence for 46 
this effect and we do not include it in our assessment. Overall a best estimate for the rapid adjustment is 47 
taken to be –0.1 W m–2, with a 5% to 95% uncertainty range of –0.3 to +0.1 W m–2. The uncertainties are 48 
added in quadrature to the estimate of RFari to give an assessment for AFari of –0.5 ± 0.4 W m–2. 49 
 50 
7.5.1.2 Radiative Forcing by Species 51 
 52 
AeroComII studies have calculated aerosol distributions using 1850 and 2000 simulations with the same 53 
meteorology to isolate RFari for individual aerosol types (SO4, BC fossil-fuel, OC fossil-fuel, biomass 54 
burning or BB, SOA, NO3). Unless otherwise noted in the text below the best estimate and 5–95% ranges for 55 
individual types quoted in Figure 7.18 are solely based on the AeroComII range (Myhre et al., 2012) and the 56 
estimates have been scaled by emissions to derive 1750–2010 RFari values. Note that although global 57 
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numbers are presented here these RF estimates all exhibit large regional variations and individual aerosol 1 
species can contribute significantly to regional climate change despite rather small RF estimates (e.g., Wang 2 
et al., 2010b). 3 
 4 
For sulphate AeroComII models give a RF median and 5–95% uncertainty range of –0.35 ± 0.2 W m–2, for 5 
the 1850–2000 period and –0.37± 0.2 W m–2 for the 1750–2010 period. This estimate and uncertainty range 6 
are consistent with the AR4 estimate of –0.4 ± 0.2 W m–2, which is retained as the best estimate for AR5. 7 
 8 
RF from BC is evaluated in different ways in the literature. The BC RF in this report is from fossil fuel and 9 
biofuel sources, while open burning sources are attached to the BB aerosol, which also includes other 10 
organic species (see Section 7.3.2). The radiative effect from all anthropogenic plus natural sources of BC 11 
derived using an analysis of AERONET level 2.0 (e.g., Ramanathan and Carmichael, 2008) is likely biased 12 
high due to the inability of AERONET to measure small optical depths (Section 7.3.4, Bond et al., 2012). 13 
Bond et al. (2012) analysed BC forcing across 18 model variants, including 8 AeroComII models, using and 14 
improved AERONET scaling and accounting for model bias in the BC vertical profile. Scaling for 15 
absorption AOD in the models to account for a low bias in emissions (see Section 7.3.2) typically led to 50% 16 
or larger underestimates in RF, whilst BC at too high altitudes in models led to a RF overestimate of around 17 
15% (Zarzycki and Bond, 2010; Section 7.3.3). Bond et al. (2012) also performed an uncertainty analysis, 18 
principally of the scaling approach and forcing efficiency with each contributing roughly a ±40% (2 standard 19 
deviation) uncertainty. RFs from Bond et al. (2012) were assessed to be +0.17, +0.12 and +0.15 W m–2 from 20 
fossil fuel, biofuel and open burning sources, respectively. AeroComII models give a BC RFari from fossil 21 
fuel and biofuel of +0.19 ± 0.013 W m–2 for the 1850–2000 period and +0.24 ± 0.19 W m–2 for the 1750–22 
2010 period (Myhre et al., 2012). The Bond et al. (2012) scaling is used to derive the best estimate of BC 23 
RFari of +0.3 W m–2 and a ±0.2 W m–2 uncertainty range is adopted, based on both the AeroComII range and 24 
the Bond et al. (2012) bottom-up uncertainty analysis. 25 
 26 
Biomass burning aerosol RFari, which includes both BC and OA species, is estimated from AeroComII 27 
models as –0.01 ± 0.08 W m–2, and an estimate of +0.0 (–0.1 to +0.1) W m–2 is adopted. Note here that the 28 
BB RFari is close to zero, but consists of rather strong RFari from BC and OA as shown in Figure 7.18. The 29 
SOA RFari estimate is –0.08 ± 0.2 W m–2 and the POM from fossil fuel estimate is –0.05 ± 0.04 W m–2. For 30 
OA from natural burning and for SOA the natural radiative effects can be an order of magnitude larger than 31 
the RF (see Sections 7.3.2, Section 7.3.3, and O'Donnell et al., 2011) and they could thus contribute to 32 
climate feedback (see Section 7.3.6). 33 
 34 
The AeroComII RF estimate is used for nitrate aerosol, giving an RFari of –0.13 ± 0.1 W m–2, but comprises 35 
a relatively large 1850 to 1750 correction term. This is in good agreement with earlier estimates (e.g., Adams 36 
et al., 2001; Bauer et al., 2007; Myhre et al., 2009). In the AeroComII models ammonium aerosol is included 37 
within the sulphate and nitrate estimates. 38 
 39 
Anthropogenic sources of mineral aerosols can result from changes in land use and water use or climate 40 
change. Estimates of the RF from anthropogenic mineral aerosols are highly uncertain, because natural and 41 
anthropogenic sources of mineral aerosols are often located close to each other (Ginoux et al., 2012a; 42 
Mahowald et al., 2009). Using a compilation of observations of dust records over the 20th century with 43 
model simulations, Mahowald et al. (2010) deduced a 1750–2000 change in mineral aerosol RFari including 44 
both natural and anthropogenic changes of –0.14 ± 0.11 W m–2. This is consistent within the AR4 estimate of 45 
–0.1 ± 0.2 W m–2 (Forster et al., 2007) which is retained here. Note that some of this forcing could be due to 46 
feedback processes (see Section 7.3.6). 47 
 48 
[INSERT FIGURE 7.18 HERE] 49 
Figure 7.18: Mean (solid line), median (dashed line), one standard deviation (box) and full (min-max) range (whiskers) 50 
for RFari (in W m–2) from different aerosol types from AeroCom II models. The forcings are for the 1850 to 2000 51 
period. Adapted from Myhre et al. (2012). 52 
 53 
7.5.1.3 Absorbing Aerosol on Snow and Sea-Ice 54 
 55 
Forster et al. (2007) estimated the RF for surface albedo changes from BC deposited on snow to be +0.10 ± 56 
0.10 W m–2, with a low level of understanding, based largely on studies from Hansen and Nazarenko (2004) 57 
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and Jacobson (2004). Since AR4, observations of BC in snow have been conducted using several different 1 
measurement techniques (e.g., Doherty et al., 2010; Forsström et al., 2009; Huang et al., 2011; Kaspari et al., 2 
2011; McConnell et al., 2007; Ming et al., 2009; Xu et al., 2009), providing data with which to constrain 3 
models. Laboratory measurements have confirmed the albedo reduction due to BC in snow (Hadley and 4 
Kirchstetter, 2012). The albedo effects of non-BC constituents have also been investigated but not rigorously 5 
quantified. Global modelling studies since AR4 have quantified present-day radiative effects from BC on 6 
snow of +0.02 to +0.08 W m–2 (Flanner et al., 2009; Flanner et al., 2007; Hansen et al., 2007; Koch et al., 7 
2009a; Rypdal et al., 2009; Skeie et al., 2011; Wang et al., 2011c). These studies apply different BC 8 
emission inventories and atmospheric aerosol representations, include forcing from different combinations of 9 
terrestrial snow, sea-ice, and snow on sea-ice, and include different indirect effects such as snow grain size 10 
evolution and melt-induced accumulation of impurities at the snow surface, observed on Tibetan glaciers 11 
(Xu et al., 2012). The forcing operates mostly on terrestrial snow and is largest during March–May, when 12 
boreal snow and ice are exposed to strong insolation (Flanner et al., 2007). All climate change studies 13 
exploring this forcing find that it warms the Arctic. Estimates of the change in global mean surface 14 
temperature per unit forcing are 1.7–4.5 times greater for snow and sea-ice forcing than for CO2 forcing 15 
(Bellouin and Boucher, 2010; Flanner et al., 2009; Flanner et al., 2007; Hansen and Nazarenko, 2004; 16 
Hansen et al., 2005). The Koch et al. (2009a) estimate is not included in this range due to the low signal to 17 
noise ratio in their study. The greater response of global-mean temperature occurs primarily because all of 18 
the forcing energy is deposited directly into the cryosphere, whose evolution drives a positive albedo 19 
feedback on climate. Key sources of forcing uncertainty include BC concentrations in snow and ice, BC 20 
mixing state and optical properties, snow and ice coverage and patchiness, co-presence of other light-21 
absorbing particles in the snow pack, snow effective grain size and its influence on albedo perturbation, the 22 
masking of snow surfaces by clouds and vegetation, and the accumulation of BC at the top of snowpack 23 
caused by melting and sublimation. Bond et al. (2012) derive a 1750–2010 snow and sea-ice RF estimate of 24 
+0.046 (+0.015 to +0.094) W m–2 for BC by 1) considering forcing ranges from all relevant global studies, 2) 25 
accounting for biases caused by a) modelled Arctic BC-in-snow concentrations using measurements from 26 
Doherty et al. (2010), and b) exclusion of soil dust, which reduces BC forcing by approximately 20%, 3) 27 
combining in quadrature individual uncertainty terms from Flanner et al. (2007) plus that originating from 28 
the co-presence of dust, and 4) scaling the present-day radiative contributions from BB, biofuel, and fossil 29 
fuel BC emissions according to their 1750–2010 changes. Here, we adopt an estimate of +0.04 (+0.02 to 30 
+0.09) W m–2 and note that the surface temperature change is roughly three (two to four) times more 31 
responsive to this RF relative to CO2. 32 
 33 
7.5.2 Estimates of RF and AF from Aerosol-Cloud Interactions (RFaci and AFaci) 34 
 35 
RFaci and AFaci can be estimated in different ways. Both refer to changes in TOA radiation since pre-36 
industrial times but whether it is estimated from changes in SW radiation, net radiation or cloud radiative 37 
forcing varies among publications. In this section and in Figure 7.19 we refer to estimates of the change in 38 
net TOA radiation whenever possible. If that estimate is not available we use, in order of preference, the 39 
change in net SW radiation, the change in net cloud forcing and last, the change in SW cloud forcing. Given 40 
that the LW RFaci is negligible and that RFaci is limited to cloudy skies, the different ways to estimate 41 
RFaci are comparable. However, AFaci has contributions from clear-sky conditions and LW radiation, 42 
especially if aerosol effects on mixed-phase and ice clouds are considered or if the atmospheric circulation 43 
responds to changes in the SW forcing. 44 
 45 
Despite the consolidation in our understanding of the physical basis of the indirect forcing there still remain 46 
large uncertainties in quantification, because of the difficulties in representing relevant aerosol properties, 47 
clouds, and aerosol-cloud interactions in climate models as discussed in Section 7.4. Ensemble-mean 48 
globally-averaged model estimates of RFaci have thus remained rather constant over time (Figure 7.19) and 49 
amount to roughly –1 W m–2. This estimate is obtained from the average over all published estimates, 50 
treating each of them as equal (taking one value for the best estimate per model and paper). The –1 W m–2 51 
estimate is slightly more negative than the estimate of RFaci in AR4 where the reported value of –0.7 W m–2 52 
was obtained from putting more emphasis of the newest results at that time (Forster et al., 2007). Whereas 53 
early models used offline three-dimensional sulphate fields, state-of-the art GCMs have their own aerosol 54 
schemes and consider sea salt, mineral dust and carbonaceous aerosols in addition to sulphate. There does 55 
not seem to be a systematic tendency for models that use a parameterization based on cloud parcel models 56 
instead of empirical relationships between the aerosol mass/number concentration and the cloud droplet 57 
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number concentration to simulate a larger or smaller RFaci. Sensitivity studies show that RFaci is larger if 1 
the background aerosol concentration is low (Chen and Penner, 2005) as this increases the cloud 2 
susceptibility. As shown by Storelvmo et al. (2009) different empirical relationships that are used to bypass 3 
cloud activation can cause a difference of 1.3 W m–2 in RFaci. RFaci depends strongly on the assumed 4 
minimum droplet concentration because that determines the susceptibility of the cloud (Hoose et al., 2009). 5 
Models that use autoconversion rates of cloud droplets to form rain drops which depend inversely on the 6 
droplet concentration automatically simulate an increase in cloud lifetime and cloud liquid water. In small-7 
scale studies no increase in cloud lifetime is found because smaller droplets also evaporate more readily 8 
(Jiang et al., 2006), a process that is not yet considered in GCMs. AFaci tends to be less negative if changes 9 
to the cloud droplet size distribution (dispersion) are considered (e.g., Rotstayn and Liu, 2005) or if a 10 
prognostic equation for precipitation is introduced (Posselt and Lohmann, 2009) because that shifts the 11 
emphasis from autoconversion to accretion between cloud droplet and rain drops in better agreement with 12 
what can be inferred from observations and large-eddy simulations (Wood, 2005). 13 
 14 
Recent estimates of RFaci using satellite-based observations are systematically weaker (–0.4 W m–2 in 15 
Figure 7.19) than the estimates, which were derived from GCM calculations based on parameterization of 16 
physical processes or in-situ observations (Lohmann and Lesins, 2002; Quaas et al., 2008; Quaas et al., 17 
2009). The satellite-based data show lower susceptibility of cloud effective radius or droplet number 18 
concentration to aerosol optical depth or number concentration than do in-situ observations or detailed cloud 19 
parcel model calculations (McComiskey and Feingold, 2008), leading to the differences in the estimate of 20 
RFaci. This result is at least partly due to scale-related averaging biases in satellite retrievals (McComiskey 21 
and Feingold, 2012). It is also generally difficult to separate the RFaci from the rapid cloud response and 22 
meteorological effects in both observations and fully coupled numerical model calculations (e.g., George and 23 
Wood, 2010; Lohmann et al., 2010; Mauger and Norris, 2010; Painemal and Zuidema, 2010). Penner et al. 24 
(2011) have recently questioned the applicability of present day (satellite-based) observations of cloud-25 
aerosol susceptibility to present-day minus preindustrial calculations in climate models. Their work suggests 26 
that RFaci may be significantly higher than suggested by Quaas et al. (2008). 27 
 28 
There is conflicting evidence for the importance of AFaci associated with cirrus, ranging from a statistically 29 
significant impact on cirrus coverage (Hendricks et al., 2005) to a very small effect (Liu et al., 2009). Penner 30 
et al. (2009) obtained a rather large (unadjusted) forcing of anthropogenic ice-forming aerosol on upper 31 
tropospheric clouds; however, they ignored potential compensating effects on lower lying clouds. The 32 
climate impact of anthropogenic lead-containing mineral dust particles, among the most efficient ice-forming 33 
substances, has been investigated. In the extreme scenario in which 100% of ice-forming mineral dust 34 
particles in cirrus clouds contained lead, up to +0.8 W m–2 more longwave radiation was emitted to space as 35 
compared to pure mineral dust particles (Cziczo et al., 2009b). A new study based on two GCMs and 36 
different ways to deduce AFaci on cirrus clouds estimates that effect to be +0.27 ± 0.1 W m–2 (Gettelman et 37 
al., 2012b), which partially offsets the total AFaci. 38 
 39 
A complementary approach to GCM-based estimates of AF/RF is to infer AF/RF as a residual using the 40 
observed temperature record over land, and estimates of the ocean heat uptake and the evolution of 41 
greenhouse gas and solar RF (Anderson et al., 2003; Hegerl et al., 2007). These approaches, called inverse 42 
estimates, normally involve models of intermediate complexity. The only inverse study that obtained RFaci 43 
bracketed it to be between 0 and –1.2 W m–2 (Knutti et al., 2002). Both RFaci estimates constrained by 44 
satellite observations and the ensemble-mean model estimate of –1 W m–2 fit into this range. 45 
 46 
In conclusion, there are different rapid adjustments that contribute to the AF through changes in cloud 47 
condensate, cloud cover, cloud phase or precipitation efficiency (Section 7.4). These adjustments can either 48 
increase or decrease RFaci. While adjustments in both directions occur in CRMs (Section 7.4), climate 49 
models do not always include the processes leading to compensation effects and positive adjustments. For 50 
this reason we defer our assessment of RFaci and AFaci to Section 7.5.3. 51 
 52 
7.5.3 Estimates of AF from Combined Aerosol-Radiation and Aerosol-Cloud Interactions (AFari+aci) 53 
 54 
The first GCM estimates of AFari+aci only included aci in liquid stratiform clouds. Its mean value of –1.5 W 55 
m–2 is only slightly less negative than the mean AFaci suggesting that ari play a secondary role once aci are 56 
considered. AFari+aci is much more variable if secondary processes (+SEC) such as aci on mixed-phase or 57 
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convective clouds are additionally included in GCMs (Figure 7.19). The model average to –1.4 W m–2 is 1 
dominated by a few large negative estimates. Thus, the median value of –1.1 W m–2 may be more 2 
meaningful. The spread between the GCMs studies that also include aci in mixed-phase clouds (+MPC) can 3 
be explained by differences in the frequency of glaciation of supercooled clouds. If more IN are available in 4 
present-day conditions, supercooled clouds glaciate more readily and precipitate (see Section 7.4.4.1). In 5 
these cases an additional cooling stems from more LW radiation being emitted to space. If on the contrary 6 
more IN become coated with soluble material and become less efficient, supercooled clouds remain longer in 7 
the atmosphere, which enhances AFaci of liquid clouds but leads to a small positive LW effect that slightly 8 
compensates for the SW cooling. 9 
 10 
Regional and global models systematically misrepresent the distribution of clouds, and cloud processes, 11 
especially those for shallow maritime clouds. One persistent shortcoming of global models is the tendency to 12 
only treat aerosol-cloud interactions in terms of stratiform but not convective clouds. In fact most GCMs 13 
neglect the radiative effect of convective clouds entirely. Recent efforts to consistently address both types of 14 
cloud representations represent a significant advance in large scale-modelling (Jacobson, 2003; Lohmann, 15 
2008; Suzuki et al., 2008). Nonetheless our understanding of aerosol-cloud interactions is incomplete, and 16 
what is well-understood, is incompletely represented in large-scale models. For these reasons, and because 17 
lifetime effects depend critically on the interplay of uncertainly parameterized physical processes, global 18 
model-based estimates of lifetime effects remain uncertain. This is reflected in the large spread of climate 19 
model estimates of AFari+aci that also consider aci in convective clouds (+CNV). One of the most reliable 20 
estimate in the +CNV category may be the estimate of –1.1 W m–2 to the farthest right because it is obtained 21 
from a multi-scale modelling framework approach (Wang et al., 2011b), which resolves convection. Using 22 
satellite retrievals to estimate AFari+aci leads to the least negative average AFari+aci of –0.7 W m–2 (Figure 23 
7.19). 24 
 25 
An inverse estimate that is obtained purely from energy balance arguments bounds AFari+aci (including 26 
unknown residuals that are assumed to be small) since 1950 to be between –0.7 to –1.5 W m–2 (Murphy et 27 
al., 2009), which is the same range as obtained from all inverse estimates of AFari+aci (Figure 7.19). 28 
 29 
We produce a best estimate and 5–95% uncertainty range for AFari+aci in the following way. The global 30 
CMIP5 models and inverse estimates are grouped together and a bootstrapping method is used to estimate a 31 
mean and standard deviation of –0.98 and 0.32 W m–2. Processing the satellite-based estimates in the same 32 
way leads to a mean and standard deviation of–0.73 and 0.30 W m-2, respectively, with the caveat that the 33 
method applied to a small sample may underestimate the variance. We combine these two estimates into a 34 
best estimate and a 5 to 95% range for RFari+aci of –0.9 (–1.5 to –0.3) W m–2, accounting for a small 1850 35 
to 1750 correction term. This estimate is significantly lower than the AR4 estimate but is consistent with 36 
several new lines of evidence. Firstly the best estimate is close to the estimate of –1.1 W m–2 from the multi-37 
scale modelling framework approach (Wang et al., 2011b). Secondly climate model studies that include 38 
missing processes such as aci on mixed-phase clouds or by putting more emphasis on accretion instead of 39 
autoconversion by treating rain as a prognostic variable arrive at smaller AFari+aci estimates than those 40 
which ignore them. Thirdly those AFari+aci studies taking satellite data into account, and therefore are 41 
observationally based, yield the least negative forcing. Fourthly the average AFari+aci from the 42 
CMIP5/ACCMIP models also amounts to about –1 W m–2 (see Table 7.5). 43 
 44 
The AFaci is estimated as the residual between AFari+aci and AFari. We further assume that AFari and 45 
AFaci are additive and uncertainties are independent, which yields to our assessment of AFaci of –0.4 (–0.9 46 
to 0) W m–2. Models indicate that RFaci is less than AFaci, which implies an estimate of –0.3 (–0.7 to 0) W 47 
m–2, again less negative than the AR4 estimate for the same reasons as given above. 48 
 49 
[INSERT FIGURE 7.19 HERE] 50 
Figure 7.19: Upper panel: GCM, satellite and inverse estimates of RFari, RFaci, AFaci and AFari+aci. Each symbol 51 
represents the best estimate per model and paper as detailed in Table 7.4. The RFaci studies are divided into those from 52 
GCMs published prior to TAR, AR4 and AR5, those including satellite data (SAT) and the inverse estimate (INV). 53 
AFaci and AFari+aci studies from GCMs on liquid stratiform clouds are also divided into those published prior to AR4 54 
and AR5 and from the CMIP5/ACCMIP models. GCM estimates that include adjustments beyond aci in liquid 55 
stratifrom clouds are marked +MPC when including aci in mixed-phase clouds and are marked +CNV when including 56 
aci in convective clouds. For RFaci from inverse estimates the range instead of the best estimate is given because it is 57 
only one study.  58 
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 1 
Lower panel: Box whisker plots of GCM, satellite and inverse estimates of RFari, RFaci, AFaci and AFari+aci. They 2 
are grouped into RFari from CMIP5/ACCMIP GCMs, RFaci from GCMs (TAR, AR4, AR5) and satellites (SAT), 3 
AFaci from GCMs, AFari+aci from GCMs taking aci only on liquid stratiform clouds (AR4+AR5) and including 4 
secondary processes (aci on mixed-phase or convective clouds) into account (+SEC), AFari+aci studies from the 5 
CMIP5 models, satellites (SAT) and inverse estimates of AFari+aci. Displayed are the averages (cross sign), median 6 
values (middle line), 33% and 67% percentiles (box boundaries) and 5% and 95% percentiles (ends of vertical lines) 7 
except for the inverse estimates, which is an expert assessment of the combined estimate of multiple inverse estimates. 8 
References for the individual estimates are provided in Table 7.4. 9 
 10 
[INSERT TABLE 7.4 HERE] 11 
Table 7.4: List of references for each category of estimates displayed in Figure 7.19. 12 
 13 
[INSERT TABLE 7.5 HERE] 14 
Table 7.5: Estimates of aerosol AF (in W m–2) in some of the CMIP5 models. The AF are estimated from fixed-SST 15 
experiments using atmosphere-only version of the models listed. Different models include different aerosol effects. 16 
 17 
7.6 Links to Precipitation 18 
 19 
7.6.1 Introduction 20 
 21 
Precipitation is limited by the availability of moisture and energy. Energy, which is required to evaporate 22 
water from the surface, is provided by the differential heating, through radiative processes, of the surface 23 
relative to the atmosphere. Evaporation cools the surface and, by making water available for condensation 24 
(which returns to the surface as precipitation), warms the atmosphere by an equal amount (Figure 7.20; 25 
Trenberth et al., 2009). The oceans provide a huge reservoir of moisture, but without the energetic 26 
imbalances set by radiative processes, there would be no driving force for the hydrological cycle. These 27 
basic constraints are most powerful when applied globally, but also help define how the structure of 28 
atmospheric circulations moderates their influence on regional scales (Neelin and Held, 1987; Raymond et 29 
al., 2009). 30 
 31 
[INSERT FIGURE 7.20 HERE] 32 
Figure 7.20: Illustration of major drivers affecting precipitation. Radiative drivers cool the atmosphere, warm the 33 
surface, and thereby provide the energy for evaporation and condensation/precipitation. Circulations organize and 34 
distribute precipitation. The ability of changes in the position or strength of circulation features to change the 35 
distribution of precipitation is referred to as a dynamic effect, the ability of warmer circulations to transport more water 36 
vapour and thereby change the amount of precipitation is referred to as a thermodynamic effect. The immediate effect 37 
of warming, greenhouse gases, clouds and aerosols on precipitation is indicated by blue or red if their change over the 38 
20th century is thought to have changed a precipitation driver in a way that will increase, respectively decrease, 39 
precipitation. Grey indicates that changes are unknown or have multiple effects of different sign. 40 
 41 
Precipitation fields simulated by the current generation of climate models still exhibit substantial biases 42 
(Liepert and Previdi, 2012; Stephens et al., 2010; Chapter 9). Nonetheless, it is possible to identify robust 43 
features in simulated response of precipitation to changes in precipitation drivers. In almost every case the 44 
Clausius-Clapeyron relation, which governs water phase changes, underlies these robust features. 45 
 46 
7.6.2 The Effects of Global Warming on Large Scale Precipitation Trends 47 
 48 
Atmospheric specific humidity is strongly expected to increase by about 7.5% K–1 in the column average 49 
(see Section 7.2.4.1). Precipitation however increases much less rapidly with temperature because the net 50 
evaporation is energetically limited. This limitation arises because the spectroscopic properties of water 51 
vapour demand that the fractional increase in its ability to absorb (and emit) infrared radiation must increase 52 
less rapidly than the fractional increase in concentration (Stephens and Hu, 2010). 53 
 54 
Globally-averaged precipitation increases with global mean surface temperature at about 2% K–1 (Held and 55 
Soden (2006) and Richter and Xie (2008); for the CMIP3 models analysed by Andrews et al. (2009) the 56 
response is 1.4–3.4% K–1), but not uniformly, as atmospheric circulations tend to increase the precipitation in 57 
the wettest latitudes, and dry latitudes may even see a precipitation decrease (Allen and Ingram, 2002; Held 58 
and Soden, 2006). This tendency of wet regions to get wetter and dry regions to get drier is moderated by a 59 
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weakening in the tropical overturning circulation (Figure 7.20). On smaller scales the signal is less clear due 1 
to model-specific regional circulation shifts (Neelin et al., 2006), but there is some evidence that the sub-2 
tropical dry zones are expanding, both as a result of the tropical convergence zones narrowing (Chou et al., 3 
2009; Neelin et al., 2006), and the storm tracks moving poleward (Allen et al., 2012) and strengthening 4 
(O'Gorman and Schneider, 2008). 5 
 6 
The “wet-get-wetter” and “dry-get-drier” response that is evident at large scales over oceans, can be 7 
understood as a simple consequence of the sharp increase in atmospheric water vapour combined with the 8 
result that changes in atmospheric circulations are significantly smaller in a relative sense (Held and Soden, 9 
2006). Wet regions are wet because they import moisture from dry regions, increasingly so with warmer 10 
temperatures. This thermodynamic effect is evident in trends in of 20th century precipitation (Allan and 11 
Soden, 2007; Zhang et al., 2007b; see Section 2.3.1), and has withstood additional analysis and scrutiny 12 
since AR4 (Chou et al., 2009; Muller and O'Gorman, 2011; Seager et al., 2010), increasing our confidence in 13 
the effect. 14 
 15 
The wet-get-wetter response is mitigated by the anticipated reduction in the overturning rate of the 16 
atmosphere (which can be understood partly as a consequence of the change in the dry static stability of the 17 
atmosphere with warming, Figure 7.20, see also Section 7.2). This argument is less robust in dry regions 18 
because of the opposing effects of increased horizontal vapour divergence by the circulation and gains from 19 
local surface evaporation, primarily over the ocean (Bony et al., 2012; Chou et al., 2009), but can still be 20 
used to understand the GCM land responses to some extent (Muller and O'Gorman, 2011). The non-uniform 21 
nature of surface warming (e.g., land areas warm more and differently than neighbouring oceans, Joshi et al., 22 
2008) induces regional circulation shifts that affect precipitation trends. Low understanding of soil-moisture-23 
precipitation feedbacks, whose sign remains uncertain, also complicates local responses to warming 24 
(Hohenegger et al., 2009). In summary, the effect of warming on precipitation on the scale of individual 25 
catchments remains highly uncertain, even though some broad-scale responses are robust and relatively well 26 
understood. 27 
 28 
7.6.3 Radiative Forcing of the Hydrological Cycle 29 
 30 
As much as half of the total change in precipitation can be related directly to the radiative effects of the CO2, 31 
irrespective of whether it causes any surface warming (Andrews et al., 2009; Bony et al., 2012). These 32 
hydrological adjustments to radiative forcing are rapid, and can be linked to rapid adjustments of clouds 33 
(Wyant et al., 2012; also Section 7.2). 34 
 35 
[INSERT FIGURE 7.21 HERE] 36 
Figure 7.21: Illustration of the response of the large-scale overturning to increasing CO2 concentrations (adapted from 37 
Bony et al., 2012). Approximately half of the response is evident before any warming is felt, but additional warming 38 
continues to slow down the circulation and adds linearly to the rapid adjustment. The rapid adjustment is different over 39 
land and ocean, with the increase in CO2 initially causing an intensification of the circulation over land. The robustness 40 
of the result is illustrated by the common behaviour of 15 CMIP5 models, irrespective of the details of their 41 
configuration. 42 
 43 
In the absence of a compensating temperature change, an increase in any well-mixed greenhouse gas reduces 44 
the net radiative cooling rate of the atmosphere. This reduces the rainfall rate and the strength of the 45 
overturning circulation. The dynamic effects are similar to those that result from the effect of atmospheric 46 
warming on the lapse rate, which also reduces the strength of the overturning circulation (e.g., Section 7.6.2) 47 
and are robustly evident over a wide range of models and model configurations (Bony et al., 2012; see also 48 
Figure 7.21). These circulation changes are more pronounced over the ocean, because asymmetries in the 49 
land-sea response to changing concentrations of greenhouse gases (Joshi et al., 2008) amplify the maritime 50 
and dampen or even reverse the terrestrial signal (Bony et al., 2012; Wyant et al., 2012). 51 
 52 
The response of the hydrological cycle to the partitioning of radiation between the surface and atmosphere 53 
partly explains why forcings having the same AF do not produce the same precipitation responses. Increased 54 
solar forcing does not strongly affect the net atmospheric cooling, and thus the hydrological cycle feels only 55 
the associated warming with little rapid adjustment (Andrews et al., 2009), despite a small atmospheric 56 
absorption of additional solar radiation (Takahashi, 2009). As a result, solar radiation management schemes 57 
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that maintain a constant surface temperature will lead to a reduction in globally averaged precipitation and 1 
potentially substantially different regional distributions (Schmidt et al., 2012b; Section 7.7). 2 
 3 
Changes in cloud radiative effects, and the radiative forcing from aerosol particles are also effective in 4 
changing the profile of radiative heating, and thus influence the hydrological cycle. Cloud effects can be 5 
large, but have been less studied than those of aerosols. To the extent that aerosol particles only scatter 6 
radiation, their global effect is expected to be analogous to that associated with changes in the solar 7 
irradiance. Absorbing aerosols act more like CO2 however, as they heat and stabilize the troposphere thereby 8 
reducing precipitation in a way that partially offsets their overall warming effect (Andrews et al., 2009). The 9 
impact of non-well-mixed precipitation drivers such as clouds, aerosols and tropospheric ozone can depend 10 
sensitively on their height and geographic distribution (Allen et al., 2012; Ming et al., 2010; Shindell et al., 11 
2012b), because of the impact of spatially non-uniform heating on atmospheric circulations of all scales, and 12 
associated adjustments of cloud cover which can further alter the circulations (Section 7.2). 13 
 14 
7.6.4 Aerosol-Cloud Interactions 15 
 16 
In contrast to aerosol-radiation interactions, aerosol-cloud interactions do not directly influence the radiant 17 
streams of energy that drive the climate system, and thus are not expected to have any influence on the 18 
global mean precipitation rate. But because such interactions affect the microphysical structure of clouds 19 
they may influence how precipitation is distributed. 20 
 21 
There is a growing body of literature suggesting that aerosol-cloud interactions affect the dynamics of 22 
individual convective clouds and storms, but in a variety of different ways that may be situation dependent, 23 
and remain poorly understood. An increase in cloud condensation nuclei may affect the cloud microphysical 24 
development thereby changing where and how much ice forms in convective clouds (Khain et al., 2005; 25 
Rosenfeld and Woodley, 2001), or how much cloud water is available for detrainment and evaporation after 26 
shallow convection (Stevens and Seifert, 2008). These changes tend to affect the vertical distribution of 27 
latent heating in ways that would support the invigoration of convection (Tao et al., 2012). Some support for 28 
these ideas is provided by observations (Devasthale et al., 2005; Koren et al., 2010; Koren et al., 2008), but 29 
the interpretation of the observational evidence is difficult for reasons discussed extensively in Section 30 
7.4.1.2. Modelling studies suggest that aerosol-cloud interactions accompanying increased aerosol loading 31 
may either invigorate or suppress storms, depending on environmental factors such as vertical wind shear 32 
(Fan et al., 2009). For the more studied cases in which invigoration is present, the degree of invigoration 33 
depends sensitively on a number of factors, including the representation of cloud and aerosol microphysics 34 
(Ekman et al., 2011), as well as the types of clouds and storms being simulated (Khain, 2009; Seifert and 35 
Beheng, 2006). Studies that have looked at the effect of aerosol-cloud interactions in more of a climate 36 
context, wherein convection is allowed to equilibrate with its forcing, find that invigoration effects are minor 37 
(van den Heever et al., 2011) or negligible (Morrison and Grabowski, 2011), suggesting that convective 38 
intensity is also limited by energetic constraints (e.g., Chou et al., 2009; Raymond et al., 2009). 39 
 40 
Because precipitation development in clouds is a time dependent process, which proceeds at rates that are 41 
partly determined by the cloud microphysical structure (Seifert and Zängl, 2010), aerosol-cloud interactions 42 
may lead to shifts in topographic precipitation to the leeward side of mountains when precipitation is 43 
suppressed, or to the windward side in cases when it is more readily initiated. Orographic clouds show a 44 
reduction in the annual precipitation over topographical barriers downwind of major urban areas in some 45 
studies (Givati and Rosenfeld, 2004; Jirak and Cotton, 2006) but not in others (Halfon et al., 2009). Even in 46 
cases where effects are reported, the interpretation of the data remains controversial (Alpert et al., 2008; 47 
Levin and Cotton, 2009). 48 
 49 
The idea that precipitation can respond in a variety of different, often compensating, ways to a microphysical 50 
perturbation from the ambient aerosol (as also discussed in Section 7.4) receives support from studies using 51 
high-resolution numerical weather prediction methods. Although large aerosol perturbations may affect the 52 
day-to-day predictions of summer season rainfall over Germany, no systematic effect of aerosol-cloud 53 
interactions on precipitation is evident (Seifert et al., 2012). Likewise, although weekly cycles in aerosol 54 
properties are readily apparent, a robust effect on precipitation or storm intensity has proven difficult to 55 
detect (Barmet et al., 2009; Bäumer et al., 2008; Stjern, 2011; Tuttle and Carbone, 2011; Yuter et al., 2012). 56 
 57 
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7.6.5 The Physical Basis for Changes in Precipitation Extremes 1 
 2 
The physical basis for an effect of aerosol-cloud interactions on precipitation extremes was discussed in the 3 
previous section. Here we briefly discuss process understanding of the effect of warming on precipitation 4 
extremes; observed trends supporting these conclusions are presented in Section 2.7. 5 
 6 
Precipitation within individual storms is expected to increase with the available moisture content in the 7 
atmosphere rather than with the global precipitation (Allen and Ingram, 2002; Held and Soden, 2006). 8 
Global models provide robust support for these ideas, particularly in the extra-tropics (O'Gorman and 9 
Schneider, 2009), although the increase in the surface humidity, where the air is warmer, proves to be a 10 
better indicator of changes in extremes than changes in column humidity. When these effects are combined 11 
with a weakening of the overturning mass circulation, individual storms are expected to become more 12 
intense. On this issue global model results are less robust (Kharin et al., 2007; O'Gorman and Schneider, 13 
2009). However, experiments designed to mimic the conditions of the tropical atmosphere under climate 14 
change using large-eddy simulation (Romps, 2011) and cloud-resolving models (Muller et al., 2011) provide 15 
support for the thermodynamic scaling based on surface saturation humidity, for which precipitation 16 
extremes increase by 7–8% K–1. 17 
 18 
Inferences from observed variations in particular regions suggest a dependence on temperature that might be 19 
twice as large as the thermodynamic arguments predict (Lenderink et al., 2011; Lenderink and Van 20 
Meijgaard, 2008) and may be different at short time scales (e.g., an hour or less) than at daily or storm-21 
duration time scales (Haerter et al., 2010; Hardwick Jones et al., 2010). It is possible that in a warmer climate 22 
individual storms are deeper and drive more convergence (Chou et al., 2009; Romps, 2011; Sugiyama et al., 23 
2010); however, a problem with regional observational approaches to this question is that the atmosphere is 24 
typically more convectively unstable during regionally hotter weather, exaggerating the effect (e.g., Haerter 25 
and Berg, 2009) relative to that in a globally warmer climate where convective instability should not differ 26 
much from today (Section 7.2.4.2). From this combination of evidence we conclude that while it is very 27 
likely that precipitation extremes will increase with warming, by how much remains uncertain and may vary 28 
with time scale. 29 
 30 
Following the AR4 studies have continued to show that extremes in precipitation are associated with the 31 
coincidence of particular weather patterns (e.g., Lavers et al., 2011). We currently lack an adequate basic 32 
understanding of what controls the return time and persistence of such rare events. 33 
 34 
7.7 Solar Radiation Management and Related Techniques 35 
 36 
7.7.1 Introduction 37 
 38 
Geoengineering is the deliberate large-scale intervention in the Earth system to counter undesirable impacts 39 
of climate change on the planet (e.g., Keith, 2000; Royal Society, 2009). One class of proposed 40 
geoengineering methods is Solar Radiation Management (SRM), which aims to counter the warming 41 
associated with increasing greenhouse gas concentrations by reducing the amount of solar energy absorbed 42 
by the climate system. A related technique seeks to deliberately decrease the greenhouse effect in the climate 43 
system by altering high-level cloudiness. Another class of geoengineering methods, known as Carbon 44 
Dioxide Reduction (CDR), is discussed in Chapter 6. The potential impacts of SRM are discussed in Section 45 
19.5.4 of the WGII AR5. Some of the issues relating to cost, implementation, governance, ethics, economics, 46 
laws, and politics are assessed in Chapter 6 of the WGIII contribution to AR5. Here we assess proposed 47 
geoengineering methods that have the potential to influence components of the energy budget by at least a 48 
few tenths of a W m–2 in the global mean without presuming their technological feasibility. It should be 49 
noted that no technology for SRM has been fully developed and can be considered ready for large-scale 50 
deployment. The physical underpinnings of specific methods are discussed in Section 7.7.2 followed by an 51 
assessment of their impact on climate in Section 7.7.3. 52 
 53 
7.7.2 Assessment of Proposed SRM Methods 54 
 55 
7.7.2.1 Stratospheric Aerosols 56 
 57 
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Observations of the aftermaths of major volcanic eruptions such as Pinatubo (June, 1991) demonstrate that 1 
an increase in the amount of stratospheric aerosols cools the planet. Some proposed SRM techniques 2 
increase stratospheric aerosol in a similar way to explosive volcanic eruptions (Budyko, 1974; Crutzen, 3 
2006). Most stratospheric aerosol SRM research to date has explored the possibility of forming sulphuric 4 
acid aerosols by injecting sulphur containing gases into the stratosphere, Other particles composed of black 5 
carbon (Crutzen, 2006; Keith, 2010; Kravitz et al., 2012b) or metal oxides (Keith, 2010) have been 6 
suggested with the potential for larger RFs, but they are not assessed further here because the literature on 7 
them is too limited. 8 
 9 
The RF from stratospheric aerosols will depend on the injection strategy: chemical species (gaseous SO2, 10 
H2SO4 or sprayed aerosols), location(s), rate, and frequency of injection. The injection strategy effects 11 
particle size - an important factor influencing the mass scattering efficiency, and sedimentation rate. These 12 
properties are important to SRM, changing the reflectivity of the aerosol and its loss rate. Particle size may 13 
also have other physiochemical effects (some mentioned below). The eventual aerosol size distribution is 14 
controlled by the balance between new particle formation, deposition of vapour on pre-existing particles, 15 
evaporation of particles, coagulation, and sedimentation that changes as particles grow larger. Models that 16 
include more comprehensive representations of aerosol microphysics (English et al., 2012; Heckendorn et 17 
al., 2009; Pierce et al., 2010) found smaller aerosol burdens, larger particles and weaker RF than the earlier 18 
studies that assumed a fixed particle size (e.g., Rasch et al., 2008a). This is because coagulation and 19 
condensation of sulphuric acid on pre-existing particles both contribute to increase particle size when the 20 
injection rate is increased. Pierce et al. (2010) suggested that the injection of H2SO4, a condensable vapour, 21 
from an aircraft could produce larger forcings with lower sulfur loadings than SO2 injection. Recent 22 
modelling studies agree that emissions of sulfate aerosol precursors of 10 MtS yr–1 or greater would be 23 

needed to achieve forcing stronger than –4 W m-2 (estimated as the mean of experiments reported by 24 
Heckendorn et al. (2009), Niemeier et al. (2011) and Pierce et al. (2010)). 25 
 26 
A variety of potential side effects have been identified. Tilmes et al. (2009; 2008) found that SRM by 27 
stratospheric aerosols would lead to an increase of chemical ozone loss for the Arctic, a delay of the recovery 28 
of the Antarctic ozone hole by 30–70 years, changes in ozone abundance (column ozone depletion of 3–10% 29 
in polar latitudes and increases of 3–5% in the tropics) and discernable shifts in tropopause altitude (lifting 30 
by 1 km) from radiative heating associated with the ozone changes. The change in ozone could increase UV 31 
radiation reaching the surface, although attenuation by the aerosols may partially compensate (Vogelmann et 32 
al., 1992). A decrease in direct radiation and increase in diffuse radiation reaching the Earth’s surface could 33 
increase photosynthesis in terrestrial ecosystems (Mercado et al., 2009; see Chapter 6) and impact some solar 34 
energy technologies (see WGII AR5, Section 19.5.4). Kravitz et al. (2009) explored rain acidification from 35 
stratospheric geoengineering and concluded that acid deposition rates would be orders of magnitude lower 36 
than those that impact most ecosystems. These impacts remain poorly quantified and there may be additional 37 
ones, for instance on tropospheric photochemistry and cirrus cloud microphysics. 38 
 39 
7.7.2.2 Cloud Brightening 40 
 41 
Boundary layer clouds act to cool the planet, and relatively small changes in cloud albedo or extent can have 42 
profound effects on the Earth’s radiation budget (e.g., Slingo, 1990). Examples of cloud brightening include 43 
shiptracks produced in marine stratocumulus clouds by emissions of particles from ships and changes in 44 
trade cumulus cloud properties produced by a relatively weak but continuous volcanic eruption of SO2 (Yuan 45 
et al., 2011), as discussed in Section 7.4.3.2. Latham (1990) suggested that it might be possible to 46 
deliberately increase cloud albedo by introducing additional sea salt particles into the marine boundary layer, 47 
to act as cloud condensation nuclei and “brighten” clouds through the aerosol-cloud interaction first 48 
described by Twomey (1974) and discussed in Section 7.4. 49 
 50 
Changes in cloud morphology (e.g., from open to closed cells) or switching from low to high liquid water 51 
content clouds have the potential to create large AF locally. Marine stratocumulus clouds (with relatively 52 
weak precipitation) are thought to be an optimal cloud type for brightening because of their relatively low 53 
values of droplet concentration and the longer lifetime of sea-salt particles in non-precipitating 54 
environments. However these clouds occupy a relatively small fraction of the planet and large local RF (30 55 
to 100 W m–2) would be required to produce a globally-averaged RF of the order of –1 to –5 W m–2. 56 
 57 
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Latham et al. (2008), Jones et al. (2009) and Rasch et al. (2009) explored the impact of changing droplet 1 
concentration without an explicit examination of the complex interactions that govern the way aerosols affect 2 
clouds. Their studies show that about –1 W m–2 of AF could be produced by increasing droplet concentration 3 
over about 5% of the ocean surface area in marine stratocumulus regions. Forcing as strong as –4 W m–2 was 4 
produced by increasing droplet concentration over 75% of the ocean surface, although it is not clear whether 5 
such increases are achievable. There is less agreement among models when a more complete treatment of 6 
aerosol-cloud interactions is considered. Korhonen et al. (2010b) concluded that increases in droplet 7 
concentration would be much smaller than previous studies had assumed. In contrast, Partanen et al. (2012) 8 
used the same seeding mechanism in a different model to find much larger increases in droplet 9 
concentration, with an AF as strong as –5 W m–2. Wang et al. (2011a) used very high resolution simulations 10 
to demonstrate that cloud brightening is sensitive to cloud-dynamical feedbacks that are missing in current 11 
global models. They also explored aerosol injection strategies and concluded that rates initially proposed for 12 
cloud seeding would be insufficient to produce droplet concentration values needed for large-scale cloud 13 
brightening. These studies highlight the limitations of our understanding of aerosol-cloud interactions, and 14 
the resulting uncertainty in estimates of the AF that can be produced with cloud brightening SRM. 15 
 16 
Changes in clouds due to aerosols are often swamped by meteorological variability (Wood et al., 2011b) 17 
making detection of aerosol effects on clouds extremely difficult. Total AF from anthropogenic aerosols is 18 
assessed to be –0.9 (–1.5 to –0.3) W m–2 in Section 7.5, that is at least 5 times smaller than the AF that 19 
climate models assume is achievable with SRM. 20 
 21 
While aerosol seeding over oceans was originally proposed to brighten clouds, Hill and Ming (2012) and 22 
Partanen et al. (2012) found that aerosol-radiation interactions (the aerosol direct effect) could also be 23 
important, adding 30 to 50% to the AF from aerosol-cloud interactions, sometimes dominating the forcing in 24 
certain regions. 25 
 26 
7.7.2.3 Surface Albedo Changes 27 
 28 
Planetary albedo might also be increased by engineering local changes to the albedo of urban areas, 29 
croplands, grasslands, deserts and the ocean surfaces. 30 
 31 
Hamwey (2007) estimated the potential RF from whitening roofs and pavements at –0.17 W m–2 and 32 
calculations by Akbari et al. (2012) suggest a global-mean equilibrium cooling between 0.01 to 0.07°C. 33 
However, more detailed radiative transfer calculations (Lenton and Vaughan, 2009; Oleson et al., 2010), 34 
overestimation of the surface area of the built environment that would be available for whitening, and 35 
possible atmospheric feedbacks (Jacobson and Ten Hoeve, 2012) suggest that these are somewhat 36 
overestimated. 37 
 38 
The surface albedo of the world’s grassland and/or cropland could be modified by replacing native species 39 
with other natural or bioengineered species (Hamwey, 2007). A 25% increase in grassland albedo could give 40 
an RF of –0.5 W m–2 (Lenton and Vaughan, 2009), with the maximum effect in summer mid-latitudes. 41 
(Doughty et al., 2011; Ridgwell et al., 2009). Ridgwell et al. (2009) estimated a global-mean surface cooling 42 
of 0.11°C for a +0.04 increase in cropland albedo. Potential effects in low-latitude regions are a reduction in 43 
soil moisture, cloud cover and precipitation. The possibility for increasing crop and grassland albedo across a 44 
wide variety of species remains largely non-quantified. Irvine et al. (2011) tested the impact of increasing 45 

desert albedo up to 0.80 in a single model. This cooled surface temperature by –1.1°C (versus –0.22°C and –46 
0.11°C for their largest crop and urban albedo change). 47 
 48 
The low albedo and large extent of ocean surfaces mean that only a small increase in albedo could be 49 
sufficient to offset several W m–2 of RF by greenhouse gases. Methods have been proposed (Evans et al., 50 
2010; Seitz, 2011) to increase the fraction of the oceans covered with foam which is known to be very 51 
reflective (Whitlock et al., 1982). Neither the extent of foam generation and persistence required for a 52 
significant climate impact, nor the impact of artificial foam on the world’s ocean (including ocean biology, 53 
air-sea fluxes of latent heat, sensible heat, trace gases, aerosols, ocean circulation, and surface emissivity) 54 
have been assessed quantitatively in the peer-reviewed literature. 55 

 56 
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7.7.2.4 Cirrus Thinning 1 
 2 
Thin high cirrus clouds are relatively transparent to incoming sunlight, but absorb some of the infrared 3 
energy leaving the Earth’s surface. Their overall radiative effect is to warm the climate (see Section 7.2.1.2). 4 
Reducing the coverage or longwave opacity of these clouds would therefore produce a negative AF. Cirrus 5 
cloud coverage and optical thickness are affected by ice crystal fall speeds, which depend on ice crystal size. 6 
Mitchell and Finnegan (2009) suggested seeding the upper troposphere with efficient IN that would trigger 7 
ice nucleation at higher temperatures than in the unperturbed atmosphere. The engineered ice crystals would 8 
grow preferentially and sediment out, resulting in thinner cirrus and reducing the water vapour available for 9 
normal particle formation. This strategy depends upon details of the cirrus nucleation processes that remain 10 
poorly understood (Section 7.4.4), but climate model simulations suggest that small changes in ice 11 
nucleation and the subsequent competition of ice particles for water vapour responses could produce 12 

responses in AF of order –5 W m–2 (e.g., Lohmann et al., 2008). 13 

 14 
7.7.3 Climate Response to SRM Methods  15 
 16 
The many ways that SRM can be implemented make quantitative model evaluation and intercomparison 17 
difficult, motivating idealised experiments to explore climate model responses. One such experiment consists 18 
of an artificial reduction of the total solar irradiance, which approximates the radiative impact of space 19 
mirrors (Early, 1989), but represents the radiative impact of other SRM methods less accurately. This results 20 
in a global cooling. Balancing the RF from a CO2 increase with a reduction in the total solar irradiance 21 
results in a residual surface temperature change that is generally positive at mid- and high-latitudes, 22 
especially over continents, and generally negative in the Tropics (Bala et al., 2008; Kravitz et al., 2012a; 23 
Lunt et al., 2008; Schmidt et al., 2012b; Figures 7.22a-b and 7.23a-d). This is a robust prediction of climate 24 
models, and can be understood in terms of the difference between the relatively uniform longwave forcing 25 
(associated with greenhouse gases) and the latitudinally and seasonally varying shortwave forcing (from 26 
SRM). The residual changes in surface temperature are nevertheless much smaller than the warming due to 27 
the CO2 RF alone. These features can be seen in Figure 7.23a-d showing results from the recent 28 
Geoengineering Model Intercomparison Project (Kravitz et al., 2011). The substantial warming from 4xCO2 29 
AF at high latitudes (4°C–18°C) is reduced substantially through idealized SRM leaving residual changes, 30 
particularly a warming of 0°C–3°C near the winter pole. While increasing CO2 concentrations lead to a 31 
positive RF that warms the entire troposphere, SRM produces a negative RF that tends to cool the surface. 32 
The combination of RF used to balance the globally-averaged surface temperature increases atmospheric 33 
stability, reducing the evaporative flux, leading to a reduction in global precipitation rate as seen in Figures 34 
7.22c-d and Figures 7.23e-g (Andrews et al., 2010; Bala et al., 2008; Schmidt et al., 2012b) and discussed in 35 
Section 7.6 Other factors can also modulate the climate response in evaporation, soil moisture and 36 
precipitation, such as the enhanced closure of stomata with increased CO2 concentrations. Although models 37 
agree on the globally and annually averaged impact on precipitation, there is less agreement in the spatial 38 
pattern of the changes but some residual patterns in the idealized experiments are quite robust, for example 39 
the ~5% reduction in precipitation over SE Asia and the Pacific Warm Pool in JJA. Precipitation changes are 40 
substantially more varied between model simulations using more complex strategies for SRM as described 41 
below. 42 
 43 
[INSERT FIGURE 7.22 HERE] 44 
Figure 7.22: Zonally- and annually-averaged change in surface air temperature (°C) for (a) an abrupt 4 × CO2 45 
experiment and (b) the GeoMIP G1 experiment for 11 coupled atmosphere-ocean general circulation models. (c) and 46 
(d) Same as (a) and (b) but for the change in precipitation (mm day–1). In the GeoMIP G1 experiment (Kravitz et al., 47 
2011) an abrupt fourfold increase in CO2 concentration is balanced by a reduction in total solar irradiance to produce a 48 
top of atmosphere flux imbalance of less than ±0.1 W m–2 during the first 10 years of the simulation. All changes are 49 
relative to the pre-industrial control experiment and averaged over years 21–50. 50 
 51 
Idealized experiments have also been conducted in which solar radiation is reduced only over the ocean (e.g., 52 
to approximate the effects of marine cloud seeding or increased sea foam). Other studies have explored 53 
albedo changes over land (e.g., to represent a surface albedo increase through plant albedo or brightening 54 
desert regions) and over particular latitudinal bands (Caldeira and Wood, 2008) or regions (Irvine et al., 55 
2010; Irvine et al., 2011). Bala et al. (2010) found that although global-mean precipitation might decrease, 56 
precipitation and runoff over land could increase because of the RF gradient between ocean and land. In 57 
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contrast, increasing the albedo of desert areas may result in reduction in rainfall over the Indian and Sahel 1 
regions (Irvine et al., 2010). 2 
 3 
[INSERT FIGURE 7.23 HERE] 4 
Figure 7.23: Multi-model mean of the change in surface air temperature (°C) averaged over December, January and 5 
February months for (a) the abrupt 4 × CO2 simulation and (b) the GeoMIP G1 experiment. (c-d) same as (a-b) but for 6 
the June, July and August months. (e-h) same as (a-d) but for the change in precipitation (mm day–1). All changes are 7 
relative to the pre-industrial control experiment and averaged over years 21-50. Stippling denotes agreement on the sign 8 
of the temperature anomaly in at least 75% of the models in panels. 9 
 10 
High CO2 concentrations from anthropogenic emissions will persist in the atmosphere for a long time (for 11 
more than a thousand years in the absence of CDR). If SRM were used to counter positive forcing, it would 12 
be needed as long as the CO2 concentrations were high. If greenhouse gas concentrations increase, then the 13 
scale of SRM to offset the resulting warming would need to increase, with amplifying residual effects from 14 
increasingly imperfect compensation. Figure 7.24 shows the globally averaged warming and precipitation 15 
changes associated with a 1% yr–1 CO2 increase (GeoMIP experiment G2), with and without SRM, followed 16 
by termination of SRM at year 50. While the rate of temperature change varies by a factor of 2–3 between 17 
models, all GeoMIP models return to temperature levels consistent with CO2 forcing within one to two 18 
decades. The associated very rapid warming would have significant impact on ecosystem and human 19 
adaptation. Other strategies could be considered that use SRM with mitigation to try to avoid transitions 20 
across climate thresholds or to keep temperatures below a threshold in combination with greenhouse gas 21 
emissions reductions. Such scenarios would not necessarily be subject to the “termination effect” as 22 
described above and SRM might be used for shorter times, perhaps less than a century (Smith and Rasch, 23 
2012; Wigley, 2006). 24 
 25 
[INSERT FIGURE 7.24 HERE] 26 
Figure 7.24: Timeseries of surface temperature (°C, left) and precipitation change (mm day–1, right) for GeoMIP 27 
experiment G2, relative to each model’s 1 × CO2 reference simulation. Solid lines are simulations using SRM to 28 
balance a 1% yr–1 increase in CO2 concentration until year 50 after which SRM is stopped. Dashed lines are for 1% CO2 29 
increase simulations with no SRM. 30 
 31 
Several modelling studies (Jones et al., 2010; Rasch et al., 2008b; Robock et al., 2008) examined the model 32 
response to SRM in less idealized scenarios with stratospheric aerosol SRM when the forcing is sufficient to 33 
counter the effects of a doubling CO2 on globally-averaged surface temperature. The results show that 34 
changes in temperature, winds and precipitation are similar to those obtained in idealized studies described 35 
above, with a residual warming at high latitudes, and a reduction in global-mean precipitation. Similar 36 
responses have been observed following volcanic eruptions like Pinatubo (Trenberth and Dai, 2007). Each of 37 
these studies used a somewhat different experimental design, and there are significant disagreements in 38 
regional responses that may be due to the experimental design, model differences, or larger differences in 39 
forcing produced by different representation of the stratospheric aerosol production, transport, and loss 40 
processes. 41 
 42 
Jones et al. (2009), Rasch et al. (2009), and Hill and Ming (2012) used coupled ocean/atmosphere/sea ice 43 
models to assess the climate impacts of cloud brightening due to droplet concentration changes. A global 44 
cooling was achieved, in spite of the heterogeneous RF associated with cooling by subtropical and 45 
midlatitude cloud systems in all three models, but temperature and precipitation signatures that differed 46 
substantially. One common feature was the cooling over the seeded regions (the marine stratocumulus 47 
regions) and a warmer North Pacific adjacent to a cooler northwestern Canada, a feature reminiscent of La 48 
Niña. 49 
 50 
7.7.4 Synthesis 51 
 52 
Multiple, consistent and independent lines of evidence (from theory, model studies and observations) suggest 53 
that some SRM strategies may be able to counter a portion of the global warming due to anthropogenic 54 
greenhouse gases. In particular SRM by stratospheric aerosols appears to be scalable to counter at least a 55 
twofold increase in CO2 concentration, but models disagree on the amount of material that would need to be 56 
injected to achieve this. SRM by marine cloud brightening has received somewhat less attention, and issues 57 
are less well understood because of the high level of uncertainty about aerosol-cloud interactions, and there 58 
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is as yet no consensus on whether it will be possible to achieve a significant RF. It does not appear that SRM 1 
strategies that change land albedo (whiter rooftops and paving, vegetation changes) can produce sufficient 2 

RF to counter the warming expected from a doubling of CO2. Much less attention has been devoted to other 3 
SRM strategies, so it is not yet possible to assess their efficacy, scalability, viability and consequences. 4 
 5 
There is high agreement among models that the compensation between greenhouse gas warming and SRM 6 
cooling is imprecise and that some regional impacts would remain, but the models disagree on the details. 7 
Models consistently indicate that, if feasible, a geoengineered climate with SRM and high atmospheric CO2 8 
levels would be much closer to 20th century climate than a world with elevated CO2 concentrations and no 9 
SRM (Lunt et al., 2008; Moreno-Cruz et al., 2011). A wide range of side effects has been identified for SRM 10 
methods. Some are common to all SRM methods (e.g., a global decrease in precipitation for no temperature 11 
change in the global-mean). Others are particular to a specific SRM method (e.g., the high latitude 12 
stratospheric ozone depletion from stratospheric aerosol SRM). SRM will not address the issue of ocean 13 
acidification from increasing CO2 and may have other impacts on the climate system. If SRM were 14 
terminated at a high CO2 concentration, the global average temperature would rapidly (within a decade or 15 
two) approach temperatures consistent with that CO2 forcing, severely stressing ecosystem and human 16 
adaptation. 17 
 18 
[START FAQ 7.1 HERE] 19 
 20 
FAQ 7.1: How do Clouds Affect Climate and Climate Change? 21 
 22 
Clouds strongly affect the current climate, but observations alone cannot yet tell us how they will affect a 23 
future, warmer climate. Comprehensive prediction of clouds requires a global climate model. Such models 24 
produce cloud fields that roughly resemble those observed, but are far from perfect. Climate models vary in 25 
how they predict clouds will change in a warmer climate, but based on all available evidence, it seems likely 26 
that the net cloud-climate feedback is positive, and will not significantly limit global warming. 27 
 28 
Since the 1970s, scientists have recognised the critical importance of cloudiness for climate change. Clouds 29 
affect the climate system in a variety of ways. They produce precipitation (rain and snow) that is necessary 30 
for most life on land. They warm the atmosphere as water vapour condenses and releases latent heat. They 31 
strongly affect the flows of both solar and infrared radiation through the atmosphere. Finally, they are 32 
intimately associated with powerful vertical motions that can carry air from near the surface to the upper 33 
troposphere in less than an hour. These strong, vertical currents carry energy, moisture, momentum, and 34 
various chemical constituents, including aerosol particles. For decades, climate scientists have been using 35 
observations to study how clouds change with the daily weather, with the seasonal cycle, and with year-to-36 
year changes, such as those associated with El Niño. 37 
 38 
Each of the various cloud processes has the potential to change as the climate state evolves. Cloud feedbacks 39 
are of intense interest in the context of anthropogenic climate change. Any change in a cloud process that is 40 
caused by climate change—and in turn influences climate—represents a cloud-climate feedback. Because 41 
clouds interact so strongly with both infrared and visible radiation, relative changes in cloudiness of only a 42 
few per cent can have a potent effect on the climate system. 43 
 44 
Many types of possible cloud-climate feedbacks have been identified. Broadly speaking, they would occur 45 
through changes in cloud amount, cloud-top height, and/or cloud optical properties. We still are not sure 46 
what types of cloud feedbacks will actually occur, nor how significant they will be for climate change. 47 
Nevertheless, all the models used for the past two IPCC assessments produce cloud feedbacks that either 48 
enhance anthropogenic greenhouse warming or have little overall effect. Feedbacks are not “put into” these 49 
models, but are an aspect of the solutions to the model equations describing the atmosphere and other parts 50 
of the climate system. The differences in the strength of the cloud feedbacks produced by these models 51 
explain why they react more or less sensitively to changes in greenhouse gas concentrations. 52 
 53 
Low clouds reflect a lot of solar radiation back to space, but have only a weak effect on the infrared radiation 54 
emitted by the Earth. As a result, they tend to cool the Earth in the present climate. High clouds efficiently 55 
reflect sunlight, but also strongly reduce the amount of emitted infrared radiation. This compensation makes 56 
the surface temperature somewhat less sensitive to changes in high cloud amount than to changes in low 57 



Second Order Draft Chapter 7 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 7-59 Total pages: 139 

cloud amount. In a future climate, warmed by increasing greenhouse gases, most IPCC-assessed climate 1 
models simulate a decrease in low-cloud amount, which would increase the warming, but the extent of this 2 
decrease is quite model-dependent. 3 
 4 
Although surface temperature is relatively insensitive to changes in high cloud amount, changes in the 5 
altitude of a given amount of high clouds can more strongly affect surface temperature. Higher cloud tops 6 
increase the greenhouse effect, while reflecting a similar amount of solar radiation. There is strong evidence 7 
that high clouds rise further in a warmer climate. This acts as an important positive feedback by preventing 8 
some of the additional infrared radiative energy emitted by the surface from leaving the climate system. 9 
 10 
There are other ways clouds may change in a warmer climate. More clouds may be made of liquid drops, and 11 
fewer made of ice crystals, changing the overall amount of light reflected. Changing amounts of aerosol 12 
particles could cause changes in cloud reflectivity, independent of any caused by greenhouse gases (see FAQ 13 
7.2). Changes in wind patterns and storm tracks could also affect the regional and seasonal distribution of 14 
cloudiness and precipitation. Some studies suggest that the signal of one such expected trend—a poleward 15 
migration of the clouds associated with mid-latitude storm tracks—is already detectable in the observational 16 
record. However, because clouds are quite variable from year to year, there is as yet no broadly accepted 17 
way to infer global cloud feedback more generally from observations. 18 
 19 
[END FAQ 7.1 HERE] 20 
 21 
[START FAQ 7.2 HERE] 22 
 23 
FAQ 7.2: How do Aerosols Affect Climate and Climate Change? 24 
 25 
Atmospheric aerosols are small particles suspended in the atmosphere. They come from natural and 26 
anthropogenic sources, and can affect the climate in multiple and equivocal ways through their interactions 27 
with radiation and clouds. Overall, it seems very likely that anthropogenic variations in atmospheric 28 
aerosols have exerted a cooling influence on the Earth, which has diminished anthropogenic greenhouse 29 
warming. 30 
 31 
Atmospheric aerosols have a typical lifetime of one day to two weeks in the troposphere, and about one year 32 
in the stratosphere. They vary greatly in size, chemical composition and shape. Some aerosols, such as dust 33 
and sea spray, are mostly or entirely of natural origin, while other aerosols, such as sulphates and smoke, 34 
come from both natural and anthropogenic sources. 35 
 36 
Aerosols affect climate in many ways. First, they scatter and absorb sunlight, which modifies the Earth's 37 
radiative balance (see FAQ.7.2, Figure 1). Aerosol scattering generally makes the planet more reflective, and 38 
tends to cool the climate, while aerosol absorption has opposite effects, and tends to warm the climate 39 
system. The balance between cooling and warming depends on aerosol properties and environmental 40 
conditions. Many observational studies have quantified local radiative effects from anthropogenic and 41 
natural aerosols, but predicting their global impact requires satellite data and models. Most studies agree that 42 
the overall radiative effect from anthropogenic aerosols is to cool the planet. One of the remaining 43 
uncertainties, however, comes from soot, an absorbing aerosol which is more difficult to measure than 44 
scattering aerosols, and induces a specific cloud response. 45 
 46 
[INSERT FAQ 7.2, FIGURE 1 HERE] 47 
FAQ 7.2, Figure 1: Overview of aerosol-radiation interactions and their impact on climate. The left panels show the 48 
instantaneous radiative effects of aerosols, while the right panels show their overall impact after the climate system has 49 
responded to their radiative effects. 50 
 51 
Aerosols also serve as condensation and freezing sites, where cloud droplets and ice particles form (see 52 
FAQ.7.2, Figure 2). You might assume that more cloud condensation nuclei would increase the amount of 53 
low clouds, but cloud formation is largely limited by dynamical processes, so that the net effect on clouds of 54 
more aerosols is quite subtle, and remains uncertain. A robust result is that more aerosols generally produce 55 
liquid clouds, which are brighter because they have more numerous, smaller cloud droplets. There are many 56 
other pathways for aerosol-cloud interactions, particularly in ice—or mixed liquid and ice—clouds, where 57 
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phase changes are sensitive to aerosols. Quantifying the overall impact of aerosols on cloud amounts and 1 
properties is understandably difficult. Available studies, based on climate models and satellite observations, 2 
generally indicate that the net effect of anthropogenic aerosols on cloud is to cool the climate system. 3 
 4 
[INSERT FAQ 7.2, FIGURE 2 HERE] 5 
FAQ 7.2, Figure 2: Overview of aerosol-cloud interactions and their impact on climate. The left and right panels 6 
represent a clean and a polluted low-level cloud, respectively. 7 
 8 
Since aerosols are distributed unevenly in the atmosphere, they can heat and cool the climate system in 9 
patterns that can drive small changes in the weather. These effects are complex, and hard to simulate with 10 
current models, but several studies suggest significant effects on precipitation in certain regions. 11 
 12 
Because of their short lifetime, the abundance of aerosols—and their climate effects—have varied over time, 13 
in rough concert with anthropogenic emissions of aerosols and their gaseous precursors. Since anthropogenic 14 
emissions have increased substantially over the industrial period, this has very likely counteracted some of 15 
the warming that would otherwise have occurred from increased concentrations of long-lived greenhouse 16 
gases. Aerosols from volcanic eruptions, such as those of El Chichón and Pinatubo, have also caused 17 
sporadic cooling periods. 18 
 19 
Over the last two decades, anthropogenic aerosol emissions have decreased in industrialised countries, but 20 
increased in developing countries. It is therefore difficult to assess whether the global impact of aerosols has 21 
been to cool or warm the planet over this recent period. It is very likely, however, that emissions of 22 
anthropogenic aerosols will ultimately decrease, augmenting greenhouse-gas induced warming. 23 
 24 
[END FAQ 7.2 HERE] 25 
 26 
[START FAQ 7.3 HERE] 27 
 28 
FAQ 7.3: Could Geoengineering Counteract Climate Change and What Side Effects Might Occur? 29 
 30 
Geoengineering—also called climate engineering—is defined as a deliberate large-scale manipulation of the 31 
climate system to counteract the consequences of increasing greenhouse gas emissions. Two distinct 32 
categories of geoengineering methods are usually considered: Solar Radiation Management, also called 33 
Sunlight Reflection Methods (SRM, assessed in Chapter 7) and Carbon Dioxide Removal (CDR, assessed in 34 
Chapter 6). Each operates on different physical principles, and acts in different ways. While both methods 35 
are likely to counter some effects of greenhouse gases, they also carry risks and side effects. 36 
 37 
Carbon Dioxide Removal (CDR) Methods 38 
 39 
By definition, CDR methods are designed to remove CO2 from the atmosphere, often through a manipulation 40 
of natural carbon cycle processes. The carbon withdrawn from the atmosphere would then be stored in land, 41 
ocean or geological reservoirs, where it would have little or no impact on the Earth’s energy budget. Some 42 
proposed CDR methods would rely on biological processes, such as afforestation/reforestation, carbon 43 
sequestration in soils through biochar, bioenergy associated with carbon capture and storage (BECCS) and 44 
ocean fertilisation. Others would rely on geochemical processes, such as accelerated weathering of silicate 45 
and carbonate rocks—on land or in the ocean—to remove CO2 from the atmosphere, or directly capture it in 46 
industrial facilities (see FAQ.7.3, Figure 1). The captured CO2 would then be stored in organic form in land 47 
reservoirs, and in inorganic form in ocean and geological reservoirs. 48 

 49 
[INSERT FAQ 7.3, FIGURE 1 HERE] 50 
FAQ 7.3, Figure 1: Overview of some carbon dioxide removal methods. (a) nutrients are added to the ocean, which 51 
increases oceanic productivity in the surface ocean and transports a fraction of the resulting biogenic carbon downward, 52 
(b) alkalinity from solid minerals is added to the ocean, which causes more atmospheric CO2 to dissolve in the ocean, 53 
(c) the weathering rate of silicate rocks is increased, and the dissolved carbonate minerals are transported to the ocean, 54 
(d) alkalinity from mined silicate rocks is extracted, then combined with atmospheric CO2 to produce solid carbonate 55 
minerals, (e) atmospheric CO2 is captured chemically, and stored either underground or in the ocean, (f) biomass is 56 
burned at an electric power plant with carbon capture, and the captured CO2 is stored either underground or in the ocean 57 
and (g) CO2 is captured through afforestation and reforestation to be stored in land ecosystems. 58 
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 1 
In general, insofar as CDR methods are effective at removing CO2 from the atmosphere and keeping the 2 
removed carbon away from the atmosphere, they are believed to pose a low risk of unintended climatic side 3 
effects. If deployed, they would counter the root cause of CO2-induced climate change by reducing 4 
atmospheric carbon dioxide concentrations, thus reducing the associated radiative forcing and ocean 5 
acidification. 6 
 7 
One main issue relates to the capacity and permanence of storage reservoirs. Permanent carbon storage by 8 
CDR would decrease climate warming in the long term. However, non-permanent storage strategies, which 9 
would eventually see the CO2 returned to the atmosphere, would only reduce climate change for some 10 
limited time. Geological reservoirs could permanently store several thousand PgC, while oceans may also be 11 
able to store a further few thousand PgC. In contrast, the estimated capacity of the terrestrial biosphere is 12 
only 150 to 200 PgC, which represents only about 10% of the existing living biomass and soil carbon pools. 13 
 14 
It is well known that the land and ocean carbon pools act as a buffer for CO2 emitted to, and removed from, 15 
the atmosphere. At present, about 50% of the CO2 emitted into the atmosphere from fossil fuel burning is 16 
taken up by the land and ocean carbon pools. Should CDR be deployed, the uptake would be reduced or even 17 
reverse into a carbon source over a period of several decades. Therefore, to offset past anthropogenic CO2 18 
emissions, CDR techniques would need to remove not just the CO2 that accumulated in the atmosphere, but 19 
also the anthropogenic carbon previously taken up by terrestrial and oceanic sinks. 20 
 21 
Any given biological or chemical weathering CDR method is estimated to be able to remove a maximum of 22 
100 PgC (equivalent to about 50 parts per million by volume [ppm] of atmospheric CO2) over a century. 23 
However, that maximum potential cannot typically be achieved, due to constraints such as competing 24 
demands for land. Furthermore, buffering could reduce the effective potential to about 25 ppm. 25 
 26 
The atmospheric concentration of CO2 has risen by more than 75 ppm in the last 50 years. Assuming a 27 
maximum CDR sequestration rate of 100 PgC per century as discussed above, any single biological or 28 
chemical weathering CDR method would take about three centuries to remove the CO2 emitted in the last 50 29 
years, making it difficult—even for a suite of biological methods—to mitigate climate change rapidly. Direct 30 
air capture methods could in principle operate much more rapidly, but are limited by cost, energy use and 31 
environmental constraints. 32 
 33 
CDR could have climatic and environmental side effects. For instance, it would tend to counter the general 34 
increase in plant productivity expected in a world with higher CO2 concentrations. A large-scale increase in 35 
vegetation coverage, for instance through afforestation or energy crops, could alter surface characteristics, 36 
such as surface reflectivity and turbulent fluxes. Many modelling studies have shown that afforestation in 37 
seasonally snow-covered boreal regions could accelerate global warming, whereas afforestation in the 38 
tropics may be more effective at slowing global warming. 39 
 40 
Ocean-based CDR methods, which rely on enhanced biological production, could have many 41 
biogeochemical side effects, most of them being largely unknown, given the complexity of marine 42 
ecosystem communities. Macronutrients such as nitrogen and phosphorus would decrease in regions where 43 
marine productivity is artificially enhanced, likely leading to a shortage of nutrients downstream and a 44 
decrease in productivity. Ocean-based biological CDR methods might also have impact on ocean oxygen 45 
levels, and stimulate increased production of DMS, isoprene, and non-CO2 greenhouse gases such as N2O 46 
and CH4. Finally acidification of the deep ocean might occur, caused by the respiration associated with the 47 
organic matter that is exported downwards. 48 
 49 
Solar Radiation Management (SRM) Methods 50 
 51 
The globally-averaged temperature of the planet is controlled by the amount of sunlight absorbed by the 52 
Earth’s atmosphere and surface, and by the existence of a greenhouse effect, by which gases and clouds 53 
make the atmosphere opaque in the infrared spectrum where terrestrial radiation is emitted. If less incoming 54 
sunlight reaches the surface, because of an increase in the reflectivity of the planet, or if energy is emitted to 55 
space from a lower altitude because of a less opaque atmosphere in the infrared, the average global surface 56 
temperature will be less. 57 
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 1 
Suggested geoengineering methods which manage the Earth’s radiative budget are based on this fundamental 2 
physical principle (see FAQ7.3, Figure 2). These methods propose to either reduce sunlight reaching the 3 
Earth—using mirrors in space—or increase the reflectivity of the planet by making the atmosphere, clouds or 4 
the surface more reflective. Another technique proposes to suppress cirrus clouds, as these absorb some of 5 
the terrestrial radiation emitted by the Earth. 6 
 7 
[INSERT FAQ 7.3, FIGURE 2 HERE] 8 
FAQ 7.3, Figure 2: Overview of some proposed solar radiation management (SRM) schemes to reflect sunlight to 9 
space that would otherwise be absorbed. Illustrated methods, counter-clockwise from upper left, are (a) reflectors in 10 
space, (b) aerosols in the stratosphere, (c) enhanced reflectivity of marine clouds, (d) making the ocean surface more 11 
reflective, (e) growing more reflective crops, and (f) whitening of roofs and other built structures. 12 
 13 
Basic physics tells us that if any of these methods produce a net flux change of energy from Earth to space, 14 
the planet will cool. The picture is complicated, however, because of the many complex physical processes 15 
which govern the interactions between the flow of energy, the atmospheric circulation, weather and the 16 
resulting climate. 17 
 18 
While the average surface temperature of the planet responds to the energy budget in a rather straightforward 19 
way, the temperature at any given location and time is influenced by many other factors. The amount of 20 
cooling from SRM will not in general equal the amount of warming caused by greenhouse gases at each 21 
location and time. For example, SRM will only change heating rates during the daytime, whereas changes in 22 
greenhouse gases affect heating rates during both day and night. This inexact compensation will have some 23 
influence on the diurnal cycle of surface temperature, even if the average surface temperature is unchanged. 24 
There may be other important changes: a uniform stratospheric aerosol loading might offset global mean 25 
CO2-induced warming, but some regions will cool less than others and polar regions could be left with some 26 
residual warming. 27 
 28 
If deployed, SRM could theoretically counteract anthropogenic climate change rapidly, cooling the Earth to 29 
pre-industrial levels within one or two decades. We know this from climate models but also from the 30 
observed rapid cooling of about 0.5 K that followed the eruption of Mt Pinatubo in 1991. 31 

 32 
Climate consists of many factors besides surface temperature. Consequences for other climate features, such 33 
as precipitation, soil moisture, river flow, snowpack and sea ice, may also be important. Both models and 34 
theory show that compensating an increased greenhouse effect with SRM will not counter the globally-35 
averaged surface temperature and rainfall equally, and there could be large regional changes. Such imprecise 36 
compensation in regional and global climate patterns makes it very unlikely that solar radiation management 37 
will produce a future climate that is “just like” the one we experience today, or have experienced in the past. 38 
However, climate models indicate that a geoengineered climate with SRM and high atmospheric CO2 levels 39 
could be much closer to 20th century climate than a future climate with elevated CO2 concentrations and no 40 
SRM. 41 
 42 
SRM techniques will have other side effects: radiation management by stratospheric sulphate aerosols can 43 
induce stratospheric ozone depletion, especially while chlorine from CFC emissions still resides in the 44 
atmosphere, possibly increasing dangerous ultraviolet radiation reaching the surface. It can also alter the 45 
ratio of direct to diffuse sunlight reaching the surface, which is known to affect terrestrial ecosystems. 46 
Finally, SRM will not mitigate the ocean acidification associated with increasing atmospheric CO2 47 
concentrations. 48 
 49 
Without CDR, high CO2 concentrations from anthropogenic emissions will persist in the atmosphere for as 50 
long as a thousand years, and SRM would have to be maintained for a similar period to remain effective at 51 
counteracting global warming. Stopping SRM while CO2 concentrations were still high would lead to a very 52 
rapid warming over one or two decades, severely stressing ecosystem and human adaptation. 53 
 54 
As greenhouse gas concentrations increase, the scale of any SRM deployment would have to increase too, in 55 
order to keep pace with the greenhouse effect. This would exacerbate the residual climate change and the 56 
risk of abrupt termination. SRM could conceivably help avoid transitions across climate thresholds or tipping 57 
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points that might, at some point, be unavoidable otherwise. Nevertheless, its side effects make it a high-risk 1 
strategy for staving off climate change. 2 
 3 
[END FAQ 7.3 HERE] 4 

5 
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Tables 1 
 2 
Table 7.2: Global and regional anthropogenic and natural emissions important for atmospheric aerosols. For the anthropogenic components the maximum and minimum values from 3 
available inventories are presented according to Granier et al. (2011). Units are Tg yr–1 except for BVOCs in TgC yr–1 and DMS in TgS yr–1. Dust and sea-spray estimates span the 4 
range in the historical CMIP5 simulations. SOA range is taken from Spracklen et al. (2011). BVOC range from Arneth et al. (2008). 5 

Year 2000 
Emissions 

Dust Anthropogenic 
NMVOCs 

Anthropogenic 
BC 

Anthropogenic 
OA 

Anthropogenic 
SO2 

Anthropogenic 
NH3 

 
Natural Global 

Tg yr–1 MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX Source MIN MAX 
Total 744 8061 121.00 139.50 4.60 5.60 6.40 12.70 102.00 145.00 37.50 38.90 Sea Spray 1441 6786 
Western Europe 0.1 71 9.20 14.30 0.32 0.38 0.32 0.40 6.10 14.10 3.40 4.50 PBAP 

Including spores 28 
50 1000 

Central Europe All 
Europe 

 2.30 3.50 0.11 0.21 0.25 0.39 4.60 10.00 1.10 1.20 Dimethylsulphide 10 40 

USA 0.2  372 13.00 17.50 0.27 0.40 0.36 0.51 13.50 17.80 3.30 4.40 Monoterpenes 32 121 
Canada All N. 

America 
 1.50 3.40 0.04 0.04 0.03 0.06 2.20 2.90 0.51 0.60 Isoprene 412 601 

Central America   2.90 4.10 0.11 0.11 0.17 0.35 3.70 4.10 1.10 1.10 SOA 50 380 
South America 4 380 8.40 12.90 0.20 0.33 0.32 0.83 3.80 8.80 3.40 3.50    
Africa 519 3807 10.80 14.50 0.46 0.62 1.05 1.91 5.30 8.80 2.30 2.40    
China 23 386 11.50 24.50 0.71 1.41 1.10 3.80 19.20 21.10 8.90 13.60    
India 20 347 7.30 10.80 0.45 0.84 1.00 3.27 4.00 7.90 3.70 8.50    
Oceania 0 7.6 0.00 1.50 0.03 0.04 0.04 0.08 2.40 2.70 0.72 0.72    

6 
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Table 7.3: Key aerosol properties of the main aerosol species in the troposphere. Brown carbon is a particular type of OA but is treated here as an additional component because it is 1 
light absorbing. The estimate of aerosol burdens and lifetimes in the troposphere are based on the AeroCom models, except for primary biological aerosol particles (PBAP), which 2 
are treated by analogy to other coarse mode aerosol types. 3 

Aerosol Species Global Burden Mass Size Distribution Sources Sinks Lifetime Key Climate  
Relevant Properties 

Black carbon  Freshly emitted: 0–80 nm 
Aged: accumulation mode 

Combustion of fossil fuels, biofuels and 
biomass 

Wet deposition 
Dry deposition 

1 week to 10 days Large mass absorption efficiency in 
the visible  

Brown carbon  Freshly emitted: 100–400 nm 
Aged: accumulation mode 

Combustion of biofuels and biomass Wet deposition 
Dry deposition 

1 week Medium mass absorption efficiency 
in the visible. Light scattering. 

Organic aerosol  POA: Aitken mode 
SOA: nuclei mode 
Aged OA : accumulation mode 
Biogenic POA : coarse mode 

Combustion of fossil fuel, biofuel and 
biomass. Continental and marine 
ecosystems. Some anthropogenic non-
combustion activities. 

Wet deposition 
Dry deposition 

1 week Light scattering. Lens effect when 
deposited on black or brown carbon. 
CCN active (depending on aging 
time and mechanism). IN active 
(biogenic POA) 

Sulphate  Secondary: Nuclei, Aitken, and 
accumulation mode 
Primary: coarse mode 

Primary: marine and volcanic emissions. 
Secondary: oxidation of SO2 from 
natural and anthropogenic sources  

Wet deposition 
Dry deposition 

1 week Light scattering. Very hygroscopic. 
Lens effect when deposited on black 
or brown carbon. CCN active. 

Nitrate  Accumulation and coarse modes Oxidation of NOx  Wet deposition 
Dry deposition  

1 week Light scattering. CCN active. 

Dust (sensitive to 
size cutoff) 

Coarse and super-coarse modes, 
with a small accumulation mode 

Wind erosion, soil resuspension. Some 
agricultural practices and industrial 
activities (cement) 

Sedimentation 
Dry deposition 
Wet deposition 

1 day to 1 week 
depending on size 

IN active, light scattering and 
absorption, greenhouse effect. 

Sea-salt (sensitive to 
size cutoff) 

Coarse mode and accumulation 
mode 

Wave breaking. Wind erosion. Sedimentation 
Wet deposition 
Dry deposition  

1 day to 1 week 
depending on size 

Light scattering. Very hygroscopic. 
CCN active. 

PBAP  Mostly coarse mode Terrestrial and oceanic ecosystems Sedimentation 
Wet deposition 
Dry deposition 

1 day to 1 week 
depending on size 

IN active. 

4 
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Table 7.4: List of references for each category of estimates displayed in Figure 7.19. 1 

Estimate Acronym References 
RFari from CMIP5/ACCMIP 
models 

CMIP5/ 
ACCMIP 

[PLACEHOLDER FOR FINAL DRAFT] 

RFaci published prior to TAR TAR (Boucher and Lohmann, 1995; Chuang et al., 1997; Feichter et al., 1997; 
Jones et al., 1994; Kaufman and Chou, 1993; Kiehl et al., 2000; Lohmann 
and Feichter, 1997; Lohmann et al., 2000; Rotstayn, 1999), 

RFaci published between TAR 
and AR4 

AR4 (Chen and Penner, 2005; Chuang et al., 2002; Ghan et al., 2001; Hansen et 
al., 2005; Jones et al., 2001; Kristjansson, 2002; Ming et al., 2005; Penner 
et al., 2006; Quaas and Boucher, 2005; Quaas et al., 2004; Rotstayn and 
Liu, 2003; Rotstayn and Penner, 2001; Suzuki et al., 2004; Takemura et 
al., 2005; Williams et al., 2001) 

RFaci published since AR4 AR5 (Barahona et al., 2011; Bellouin et al., 2011; Haerter et al., 2009; Kvalevåg 
and Myhre, 2007; Lohmann et al., 2010; Lohmann et al., 2007; Penner et 
al., 2011; Rotstayn and Liu, 2009; Schmidt et al., 2012a; Storelvmo, 2011; 
Storelvmo et al., 2009; Wang and Penner, 2009; Zhou et al., 2012)  

RFaci using or constrained by 
satellite observations 

SAT (Bellouin et al., 2012; Dufresne et al., 2005; Lebsock et al., 2008; Quaas 
and Boucher, 2005; Quaas et al., 2008; Quaas et al., 2009; Storelvmo et al., 
2009) 

RFaci from inverse studies INV (Knutti et al., 2002) 
AFaci published prior to AR4 AR4 (Easter et al., 2004; Ghan et al., 2001; Johns et al., 2006; Jones et al., 2001; 

Kristjansson, 2002; Kristjansson et al., 2005; Lohmann, 2002b; Lohmann 
and Feichter, 1997; Lohmann et al., 2000; Menon et al., 2002; Ming et al., 
2005; Peng and Lohmann, 2003; Penner et al., 2006; Penner et al., 2003; 
Quaas et al., 2006; Rotstayn, 1999; Rotstayn and Liu, 2005; Rotstayn and 
Penner, 2001; Storelvmo et al., 2006; Takemura et al., 2005; Williams et 
al., 2001) 

AFaci published since AR4 AR5 (Chen et al., 2010; Ghan et al., 2011; Hoose et al., 2009; Kirkevåg et al., 
2008; Makkonen et al., 2012; Menon and DelGenio, 2007; Ming et al., 
2007b; Penner et al., 2011; Quaas et al., 2009; Rotstayn and Liu, 2009; 
Storelvmo et al., 2008a) 

AFari+aci in liquid stratiform 
clouds published prior to AR4 

AR4 (Ghan et al., 2012; Lohmann and Feichter, 2001; Lohmann et al., 2007; 
Posselt and Lohmann, 2008; Posselt and Lohmann, 2009; Quaas et al., 
2004; Quaas et al., 2006; Quaas et al., 2009; Rotstayn et al., 2007; 
Salzmann et al., 2010) 

AFari+aci in liquid stratiform 
clouds published since AR4 

AR5 (Ghan et al., 2012; Lohmann et al., 2007; Makkonen et al., 2012; Posselt 
and Lohmann, 2008; Posselt and Lohmann, 2009; Quaas et al., 2009; 
Rotstayn et al., 2007; Salzmann et al., 2010) 

AFari+aci in liquid and mixed-
phase stratiform clouds  

+MPC (Hoose et al., 2010b; Hoose et al., 2008; Jacobson, 2006; Lohmann, 2004; 
Lohmann and Diehl, 2006; Lohmann and Ferrachat, 2010; Lohmann and 
Hoose, 2009; Salzmann et al., 2010; Storelvmo et al., 2008a; Storelvmo et 
al., 2008b; Yun et al., 2012), 

AFari+aci in stratiform and 
convective clouds 

+CNV (Koch et al., 2009a; Lohmann, 2008; Menon and DelGenio, 2007; Menon 
and Rotstayn, 2006; Unger et al., 2009; Wang et al., 2011b) 

AFari+aci from 
CMIP5/ACCMIP models 

CMIP5/ 
ACCMIP 

[PLACEHOLDER FOR FINAL DRAFT] 

AFari+aci including satellite 
observations 

SAT (Bellouin et al., 2012; Lohmann and Lesins, 2002; Quaas et al., 2006; 
Quaas et al., 2009; Sekiguchi et al., 2003) 

AFari+aci from inverse studies INV (Anderson et al., 2003; Andronova and Schlesinger, 2001; Church et al., 
2011; Forest et al., 2006; Forest et al., 2002; Gregory et al., 2002; Hansen 
et al., 2011; Harvey and Kaufmann, 2002; Huber and Knutti, 2011; 
Libardoni and Forest, 2011; Murphy et al., 2009; Shindell and Faluvegi, 
2009; Stott et al., 2006) 

 2 
3 
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Table 7.5: Estimates of aerosol AF (in W m–2) in some of the CMIP5 models. The AF are estimated from fixed-SST 1 
experiments using atmosphere-only version of the models listed. Different models include different aerosol effects. 2 

Modelling Group Model Name AFari+aci from All 
Anthropogenic Aerosols 

AFari+aci from Sulphate 
Aerosols Only 

CCCma CanESM2 –0.87 –0.90 
CSIRO-QCCCE CSIRO-Mk3-6-0 –1.41 –1.10 
GFDL GFDL-AM3 –1.44a  
GISS GISS-E2-Rb –1.10a  
GISS GISS-E2-R-TOMASb –0.76a  
IPSL IPSL-CM5A-LR –0.72 –0.71 
LASG-IAP FGOALS-s2 –0.38  
MIROC MIROC-CHEMb –1.24a  
MIROC MIROC5 –1.28 –1.05 
MOHC HadGEM2-A –1.22 –1.16 
MPI MPI-M   
MRI MRI-CGM3 –1.10 –0.48 
NCAR NCAR-CAM5.1b –1.09a  
NCC NorESM1-M –1.00  
Ensemble mean  –1.05  
Standard deviation  0.29  
Notes: 3 
(a) From ACCMIP (Shindell et al., 2012a). 4 
(b) These models include the BC on snow effect.  5 
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Figure 7.1: Overview of feedback and forcing pathways involving clouds and aerosols. Forcing mechanisms are 5 

represented by black arrows; forcing agents are boxes with grey shadows, rapid forcing adjustments (also called rapid 6 

responses) are shown with brown arrows and feedbacks are other-coloured arrows. See text for further discussion. 7 
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Figure 7.2: Schematic of the new terminology used in this assessment report for aerosol-radiation and aerosol-cloud 4 

interactions and how they relate to the terminology used in AR4. The radiative forcing from aerosol-radiation 5 

interactions (abbreviated RFari) encompasses radiative effects from anthropogenic aerosols before any adjustment takes 6 

place, and corresponds to what is usually referred to as the aerosol direct effect. Rapid adjustments induced by aerosol 7 

radiative effects on the surface energy budget, the atmospheric profile and cloudiness contribute to the adjusted forcing 8 

from aerosol-radiation interactions (abbreviated AFari). They include what has earlier been referred to as the semi-9 

direct effect. The radiative forcing from aerosol-cloud interactions (abbreviated RFaci) refers to the instantaneous effect 10 

on cloud albedo due to changing concentrations of cloud condensation and ice nuclei. All subsequent changes to the 11 

cloud lifetime and thermodynamics are rapid adjustments, which contribute to the adjusted forcing from aerosol-cloud 12 

interactions (abbreviated AFaci). 13 
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Figure 7.3: Diverse cloud regimes reflect diverse meteorology. (a) A visible-wavelength geostationary satellite image 4 

shows (from top to bottom) expanses and long arcs of cloud associated with extratropical cyclones, subtropical coastal 5 

stratocumulus near Baja California breaking up into shallow cumulus clouds in the central Pacific, and mesoscale 6 

convective systems outlining the Pacific intertropical convergence zone or ITCZ. (b) A schematic section through a 7 

typical warm front of an extratropical cyclone (see orange dots in panel (a)) showing multiple layers of upper-8 

tropospheric ice (cirrus) and mid-tropospheric water (altostratus) cloud upwind of the frontal zone, an extensive region 9 

of nimbostratus associated with frontal uplift and turbulence-driven boundary layer cloud in the warm sector. (c) A 10 

schematic section along the low-level trade wind flow from a subtropical west coast of a continent to the ITCZ (see red 11 

dots in panel (a)), showing typical low-latitude cloud types, shallow stratocumulus above the cool waters of the oceanic 12 

upwelling zone near the coast and trapped under a strong subsidence inversion, and shallow cumulus over warmer 13 

waters further offshore transitioning to precipitating cumulonimbus cloud systems with extensive cirrus anvils 14 

associated with rising air motions in the ITCZ. 15 
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Figure 7.4: (a) Annual mean cloud fractional occurrence (CloudSat/CALIPSO 2B-GEOPROF-LIDAR dataset for 4 

2006–2011); (b) annual zonal mean liquid water path (blue shading, ocean only, O’Dell et al. (2008) microwave 5 

radiometer dataset for 1988–2005; the 90% uncertainty range, assessed to be 70–150% of the plotted value, is 6 

schematically indicated by the white error bar) and ice water path (grey shading, from CloudSat 2C-ICE dataset for 7 

2006–2011; the 90% uncertainty range, assessed to be 50–200% of the plotted value, is schematically indicated by the 8 

black error bar). (c-d) latitude-height sections of annual zonal mean cloud (including precipitation falling from cloud) 9 

occurrence and precipitation (attenuation-corrected radar reflectivity >0 dBZ) occurrence; the latter has been doubled to 10 

make use of a common colour scale (2B-GEOPROF-LIDAR dataset). The dashed curves show the annual-mean 0°C 11 

and −38°C isotherms. 12 
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Figure 7.5: (a-d) DJF mean high, middle and low cloud cover from CloudSat/CALIPSO GEOPROF dataset (2006–4 

2011), and 500 hPa vertical pressure velocity (colours) and GPCP precipitation (magenta contours at 3 mm day
–1

 in 5 

dash and 7 mm day
–1

 in solid); (e-h) same as (a-d), except for JJA. For low clouds, the CALIPSO-only GOCCP dataset 6 

is used at locations where it indicates as larger fractional cloud cover, because the GEOPROF dataset removes some 7 

clouds with tops at altitudes below 750 m. Low cloud amounts are likely underrepresented in regions of high cloud 8 

(Chepfer et al., 2008), although not as severely as with earlier satellite technologies. 9 
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Figure 7.6: Distribution of annual-mean top of atmosphere (a) SWCRE, (b) LWCRE, (c) net CRE (2001–2010 average 4 

from CERES-EBAF) and (d) precipitation (1981–2000 average from GPCP). 5 
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Figure 7.7: Model and simulation strategy for representing the climate system and climate processes at different space 4 

and time scales. Models are usually defined based on the range of spatial scales they represent, shown by square 5 

brackets. The temporal scales that can be represented for a given model class can vary; for instance climate models can 6 

be run for a few time steps, or can simulate millennia. The figure indicates the typical timescales for which a given 7 

model is used. Computational power prevents one model from covering all time and space scales. Since the AR4 the 8 

development of global cloud resolving models, and hybrid approaches such as the multi-scale modelling framework, 9 

have helped fill the gap between climate system and climate process models. 10 
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Figure 7.8: Clear-sky feedback parameters as predicted by [CMIP3] GCMs. Black points in the centre show the total 4 

radiative response including the Planck response, with the Planck response and individual feedbacks from water vapour 5 

and lapse rate shown to the right in red. On the left are the equivalent three parameters calculated in an alternative, 6 

relative humidity-based framework. In this framework the Planck stabilization and each of the two feedbacks are all 7 

weaker and more consistent among the models. [PLACEHOLDER FOR FINAL DRAFT: Current working draft of 8 

figure taken from Held and Shell (2012); additional data from CMIP5 TBA]. 9 
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Figure 7.9: Cloud feedback parameters as predicted by GCMs. Total feedback shown at left by black symbols, broken 4 

out into infrared and visible components in red and blue, respectively (Zelinka et al., 2012a; Zelinka et al., 2012b). 5 

Centre panel shows components attributable to clouds in different height ranges (see text); values reported by Soden 6 

and Vecchi (2011) do not conform exactly to this definition but are shown for comparison, with their “mixed” category 7 

assigned “medium”. Right panel shows components attributable to different cloud property changes (not available from 8 

all studies). 9 
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Figure 7.10: Robust cloud responses to greenhouse warming (those simulated by most models and possessing some 4 

kind of independent support or understanding). Key climatological features (tropopause, freezing level, circulations) are 5 

shown in grey. Changes anticipated in a warmer climate are shown in red (if contributing positive feedback) or brown 6 

(if contributing little or ambiguously to feedback); no robust mechanisms contribute negative feedback. Changes 7 

include rising high cloud tops and melting level, and increased polar cloud cover and/or optical thickness (high 8 

confidence); broadening of the Hadley Cell and/or poleward migration of storm tracks, and narrowing of the ITCZ 9 

(medium confidence); and reduced low-cloud amount and/or optical thickness (low confidence). Confidence 10 

assessments are based on degree of GCM consensus, strength of independent lines of evidence from observations or 11 

process models, and degree of basic understanding. 12 
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Figure 7.11: Overview of atmospheric aerosol processes and environmental variables influencing aerosol-radiation and 4 

aerosol-cloud interactions. Gas-phase processes and variables are highlighted in red while particulate-phase processes 5 

and variables appear in green. Although this figure shows a linear chain of processes from aerosols to forcings, it is 6 

increasingly recognized that aerosols and clouds form a coupled system with two-way interactions. 7 
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Figure 7.12: Bar chart plots summarizing the annual, seasonal or monthly mean mass surface concentration (μg m
–3

) of 4 

seven major aerosol components for particles with diameter smaller than 10 m, from various rural and urban sites in 5 

six continental areas of the world with at least an entire year of data, and two marine sites. For each location, the panels 6 

represent the median, the 25–75 percentiles (box), and the 10–90 percentiles (whiskers) for each aerosol component. 7 

These include: 1) urban North America. (Chow et al., 1993; Ito et al., 2004; Kim et al., 2000; Liu et al., 2005; Malm 8 

and Schichtel, 2004; Sawant et al., 2004); rural North America (Chow et al., 1993; Liu et al., 2005; Malm and 9 

Schichtel, 2004; Malm et al., 1994); 2) marine northern hemisphere Atlantic Ocean (Ovadnevaite et al., 2011; Rinaldi et 10 

al., 2009); 3) urban Europe (Hueglin et al., 2005; Lenschow et al., 2001; Lodhi et al., 2009; Lonati et al., 2005; Perez et 11 

al., 2008; Putaud et al., 2004; Querol et al., 2006; Querol et al., 2008; Querol et al., 2001; Querol et al., 2004; 12 

Rodriguez et al., 2002; Rodrıguez et al., 2004; Roosli et al., 2001; Viana et al., 2006; Viana et al., 2007; Yin and 13 

Harrison, 2008); rural Europe (Gullu et al., 2000; Hueglin et al., 2005; Kocak et al., 2007; Putaud et al., 2004; Puxbaum 14 

et al., 2004; Querol et al., 2009; Querol et al., 2001; Querol et al., 2004; Rodriguez et al., 2002; Rodrıguez et al., 2004; 15 

Salvador et al., 2007; Theodosi et al., 2010; Viana et al., 2008; Yin and Harrison, 2008; Yttri, 2007); 4) high Asia, with 16 

altitude larger than 1680 m. (Carrico et al., 2003; Decesari et al., 2010; Ming et al., 2007; Qu et al., 2008; Ram et al., 17 

2010; Rastogi and Sarin, 2005; Rengarajan et al., 2007; Shresth et al., 2000; Zhang et al., 2001; Zhang et al., 2012; 18 

Zhang et al., 2008); urban South Asia (Chakraborty and Gupta, 2010; Khare and Baruah, 2010; Kumar et al., 2007; 19 

Lodhi et al., 2009; Raman et al., 2010; Rastogi and Sarin, 2005; Safai et al., 2010; Stone et al., 2010); urban China 20 

(Cheng et al., 2000; Hagler et al., 2006; Oanh et al., 2006; Wang et al., 2003; Wang et al., 2005b; Wang et al., 2006; 21 

Xiao and Liu, 2004; Yao et al., 2002; Ye et al., 2003; Zhang et al., 2002; Zhang et al., 2012; Zhang et al., 2011); rural 22 

China (Hagler et al., 2006; Hu et al., 2002; Zhang et al., 2012) [PANEL MISSING]; urban China (Cheng et al., 2000; 23 

Hagler et al., 2006; Oanh et al., 2006; Wang et al., 2003; Wang et al., 2005b; Wang et al., 2006; Xiao and Liu, 2004; 24 

Yao et al., 2002; Ye et al., 2003; Zhang et al., 2002; Zhang et al., 2012; Zhang et al., 2011); South-East and East Asia 25 

(Han et al., 2008; Khan et al., 2010; Kim et al., 2007; Lee and Kang, 2001; Oanh et al., 2006); 5) South America 26 

(Artaxo et al., 1998; Artaxo et al., 2002; Bourotte et al., 2007; Celis et al., 2004; Fuzzi et al., 2007; Gioda et al., 2011; 27 

Mariani and Mello, 2007; Martin et al., 2010; Morales et al., 1998; Souza et al., 2010); 6) urban Africa (Favez et al., 28 

2008; Mkoma, 2008; Mkoma et al., 2009b); rural Africa (Maenhaut et al., 1996; Mkoma, 2008; Mkoma et al., 2009a; 29 

Mkoma et al., 2009b; Nyanganyura et al., 2007; Weinstein et al., 2010); 7) marine southern hemisphere Indian Ocean 30 

(Rinaldi et al., 2011; Sciare et al., 2009); 8) urban Oceania (Chan et al., 1997; Maenhaut et al., 2000; Radhi et al., 2010; 31 

Wang et al., 2005a; Wang and Shooter, 2001). 32 
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Figure 7.13: a) spatial distribution of the AOD (unitless) from the MACC model with assimilation of MODIS AOD 4 

(Benedetti et al., 2009; Morcrette et al., 2009) for the year 2010; b) to e) latitudinal vertical cross-sections of the aerosol 5 

extinction coefficient (km
–1

) for four longitudinal bands (180°W to 120°W, 120°W to 60°W, 20°W to 40°E, and 60°E 6 

to 120°E) from the CALIOP instrument (Winker et al., 2009). The black circles show the extinction scale height for 7 

90% (top) and 63% (bottom) of the average AOD. 8 
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Figure 7.14: Comparison of profiles of BC mass mixing ratios (ng kg
–1

) as measured by airborne SP2 instruments 4 

during the ARCTAS (Jacob et al., 2010), HIPPO1 (Schwarz et al., 2006; Schwarz et al., 2010) and A-FORCE (Oshima 5 

et al., 2012) campaigns and as simulated by a range of AeroCom models. The model values are averages for the month 6 

corresponding to each field campaign. 7 
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Figure 7.15: The onset temperatures and relative humidities for deposition/condensation freezing and immersion 4 

freezing for bioaerosols (Ahern et al., 2007; Diehl et al., 2001; Iannone et al., 2011; Kanji et al., 2011; Mohler et al., 5 

2008; Mortazavi et al., 2008; von Blohn et al., 2005; Yankofsky et al., 1981), mineral dusts (Archuleta et al., 2005; 6 

Bundke et al., 2008; Connolly et al., 2009; Cziczo et al., 2009; Field et al., 2006; Kanji and Abbatt, 2006; Kanji et al., 7 

2011; Knopf and Koop, 2006; Koehler et al., 2010; Kulkarni and Dobbie, 2010; Lüönd et al., 2010; Mohler et al., 2006; 8 

Murray et al., 2011; Niedermeier et al., 2010; Niemand et al., 2012; Roberts and Hallett, 1968; Salam et al., 2006; 9 

Schaller and Fukuta, 1979; Welti et al., 2009; Zimmermann et al., 2008), organics (Baustian et al., 2010; Kanji et al., 10 

2008; Petters et al., 2009; Prenni et al., 2007; Shilling et al., 2006; Wagner et al., 2010; 2011; Wang and Knopf, 2011; 11 

Zobrist et al., 2007), solid ammonium sulphate (Abbatt et al., 2006; Baustian et al., 2010; Mangold et al., 2005; 12 

Shilling et al., 2006; Wise et al., 2009; 2010) and BC (soot) (Crawford et al., 2011; DeMott, 1990; DeMott et al., 1999; 13 

Diehl and Mitra, 1998; Dymarska et al., 2006; Fornea et al., 2009; Gorbunov et al., 2001; Kanji et al., 2011; Mohler et 14 

al., 2005), from a compilation of experimental data of sub- and super-micron aerosol particles in the literature (for 15 

references see supplementary material). The large range of observed ice nucleation onset conditions is due to different 16 

experimental setups, particle sizes, activated fractions and chemical composition. Only those IN species for which at 17 

least three papers exists are shown. The solid line refers to saturation with respect to liquid water and the dashed line 18 

refers to the homogeneous freezing of solution droplets after Koop et al. (2000). Adapted from Hoose and Möhler 19 

(2012). 20 
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Figure 7.16: Schematic depicting the myriad aerosol-cloud-precipitation related processes occurring within a typical 4 

GCM grid box. The schematic conveys the importance of considering aerosol-cloud-precipitation processes as part of 5 

an interactive system encompassing a large range of spatiotemporal scales. Cloud types include low-level stratocumulus 6 

and cumulus where research focuses on droplet activation, mixing, cloud scavenging, and new particle formation; ice-7 

phase cirrus clouds where a key issue is homogeneous freezing; and deep convective clouds where some of the key 8 

questions relate to aerosol influences on liquid, ice, and liquid-ice pathways for precipitation formation, cold pool 9 

formation, and scavenging. These processes influence the short- and longwave forcing of the system and hence climate. 10 
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Figure 7.17: Annual zonal mean RFari (in W m
–2

) due to all anthropogenic aerosols from the different AeroCom II 4 

models. No adjustment for missing species in certain models has been applied. The multi-model mean is shown with a 5 

black solid line. Adapted from Myhre et al. (2012). 6 
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Figure 7.18: Mean (solid line), median (dashed line), one standard deviation (box) and full (min-max) range (whiskers) 4 

for RFari (in W m
–2

) from different aerosol types from AeroCom II models. The forcings are for the 1850 to 2000 5 

period. Adapted from Myhre et al. (2012). 6 
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Figure 7.19: Upper panel: GCM, satellite and inverse estimates of RFari, RFaci, AFaci and AFari+aci. Each symbol 4 

represents the best estimate per model and paper as detailed in Table 7.4. The RFaci studies are divided into those from 5 

GCMs published prior to TAR, AR4 and AR5, those including satellite data (SAT) and the inverse estimate (INV). 6 

AFaci and AFari+aci studies from GCMs on liquid stratiform clouds are also divided into those published prior to AR4 7 

and AR5 and from the CMIP5/ACCMIP models. GCM estimates that include adjustments beyond aci in liquid 8 

stratifrom clouds are marked +MPC when including aci in mixed-phase clouds and are marked +CNV when including 9 

aci in convective clouds. For RFaci from inverse estimates the range instead of the best estimate is given because it is 10 

only one study.  11 
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Figure 7.20: Illustration of major drivers affecting precipitation. Radiative drivers cool the atmosphere, warm the 4 

surface, and thereby provide the energy for evaporation and condensation/precipitation. Circulations organize and 5 

distribute precipitation. The ability of changes in the position or strength of circulation features to change the 6 

distribution of precipitation is referred to as a dynamic effect, the ability of warmer circulations to transport more water 7 

vapour and thereby change the amount of precipitation is referred to as a thermodynamic effect. The immediate effect 8 

of warming, greenhouse gases, clouds and aerosols on precipitation is indicated by blue or red if their change over the 9 

20
th

 century is thought to have changed a precipitation driver in a way that will increase, respectively decrease, 10 

precipitation. Grey indicates that changes are unknown or have multiple effects of different sign. 11 
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Figure 7.21: Illustration of the response of the large-scale overturning to increasing CO2 concentrations (adapted from 4 

Bony et al., 2012). Approximately half of the response is evident before any warming is felt, but additional warming 5 

continues to slow down the circulation and adds linearly to the rapid adjustment. The rapid adjustment is different over 6 

land and ocean, with the increase in CO2 initially causing an intensification of the circulation over land. The robustness 7 

of the result is illustrated by the common behaviour of 15 CMIP5 models, irrespective of the details of their 8 

configuration. 9 
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Figure 7.22: Zonally- and annually-averaged change in surface air temperature (°C) for (a) an abrupt 4 × CO2 4 

experiment and (b) the GeoMIP G1 experiment for 11 coupled atmosphere-ocean general circulation models. (c) and 5 

(d) Same as (a) and (b) but for the change in precipitation (mm day
–1

). In the GeoMIP G1 experiment (Kravitz et al., 6 

2011) an abrupt fourfold increase in CO2 concentration is balanced by a reduction in total solar irradiance to produce a 7 

top of atmosphere flux imbalance of less than ±0.1 W m
–2

 during the first 10 years of the simulation. All changes are 8 

relative to the pre-industrial control experiment and averaged over years 21–50. 9 
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Figure 7.23: Multi-model mean of the change in surface air temperature (°C) averaged over December, January and 4 

February months for (a) the abrupt 4 × CO2 simulation and (b) the GeoMIP G1 experiment. (c-d) same as (a-b) but for 5 

the June, July and August months. (e-h) same as (a-d) but for the change in precipitation (mm day
–1

). All changes are 6 

relative to the pre-industrial control experiment and averaged over years 21-50. Stippling denotes agreement on the sign 7 

of the temperature anomaly in at least 75% of the models in panels. 8 
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Figure 7.24: Timeseries of surface temperature (°C, left) and precipitation change (mm day
–1

, right) for GeoMIP 4 

experiment G2, relative to each model’s 1 × CO2 reference simulation. Solid lines are simulations using SRM to 5 

balance a 1% yr
–1

 increase in CO2 concentration until year 50 after which SRM is stopped. Dashed lines are for 1% CO2 6 

increase simulations with no SRM. 7 
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FAQ 7.2, Figure 1: Overview of aerosol-radiation interactions and their impact on climate. The left panels show the 4 

instantaneous radiative effects of aerosols, while the right panels show their overall impact after the climate system has 5 

responded to their radiative effects. 6 
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FAQ 7.2, Figure 2: Overview of aerosol-cloud interactions and their impact on climate. The left and right panels 4 

represent a clean and a polluted low-level cloud, respectively. 5 
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FAQ 7.3, Figure 1: Overview of some carbon dioxide removal methods. (a) nutrients are added to the ocean, which 4 

increases oceanic productivity in the surface ocean and transports a fraction of the resulting biogenic carbon downward, 5 

(b) alkalinity from solid minerals is added to the ocean, which causes more atmospheric CO2 to dissolve in the ocean, 6 

(c) the weathering rate of silicate rocks is increased, and the dissolved carbonate minerals are transported to the ocean, 7 

(d) alkalinity from mined silicate rocks is extracted, then combined with atmospheric CO2 to produce solid carbonate 8 

minerals, (e) atmospheric CO2 is captured chemically, and stored either underground or in the ocean, (f) biomass is 9 

burned at an electric power plant with carbon capture, and the captured CO2 is stored either underground or in the ocean 10 

and (g) CO2 is captured through afforestation and reforestation to be stored in land ecosystems. 11 
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FAQ 7.3, Figure 2: Overview of some proposed solar radiation management (SRM) schemes to reflect sunlight to 4 

space that would otherwise be absorbed. Illustrated methods, counter-clockwise from upper left, are (a) reflectors in 5 

space, (b) aerosols in the stratosphere, (c) enhanced reflectivity of marine clouds, (d) making the ocean surface more 6 

reflective, (e) growing more reflective crops, and (f) whitening of roofs and other built structures. 7 
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